forked from siddharth-agrawal/Convolutional-Neural-Network
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconvolutionalNeuralNetwork.py
432 lines (267 loc) · 16.3 KB
/
convolutionalNeuralNetwork.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
# This piece of software is bound by The MIT License (MIT)
# Copyright (c) 2014 Siddharth Agrawal
# Code written by : Siddharth Agrawal
# Email ID : [email protected]
import numpy
import math
import time
import scipy.io
import scipy.signal
import scipy.optimize
import matplotlib.pyplot
###########################################################################################
" The Convolutional Neural Network class """
class ConvolutionalNeuralNetwork(object):
#######################################################################################
""" Initialization of the network """
def __init__(self, W1, b1, zca_white, mean_patch, patch_dim, pool_dim):
""" Store the weights, taking into account preprocessing done """
self.W = numpy.dot(W1, zca_white)
self.b = b1 - numpy.dot(self.W, mean_patch)
""" Variables associated with the network """
self.patch_dim = patch_dim
self.pool_dim = pool_dim
#######################################################################################
""" Returns elementwise sigmoid output of input array """
def sigmoid(self, x):
return (1 / (1 + numpy.exp(-x)))
#######################################################################################
""" Returns the convolved features of the input images """
def convolve(self, input_images, num_features):
""" Extract useful values """
image_dim = input_images.shape[0]
image_channels = input_images.shape[2]
num_images = input_images.shape[3]
""" Assign memory for the convolved features """
conv_dim = image_dim - self.patch_dim + 1
convolved_features = numpy.zeros((num_features, num_images, conv_dim, conv_dim));
for image_num in range(num_images):
for feature_num in range(num_features):
""" Initialize convolved image as array of zeros """
convolved_image = numpy.zeros((conv_dim, conv_dim))
for channel in range(image_channels):
""" Extract feature corresponding to the indices """
limit0 = self.patch_dim * self.patch_dim * channel
limit1 = limit0 + self.patch_dim * self.patch_dim
feature = self.W[feature_num, limit0 : limit1].reshape(self.patch_dim, self.patch_dim)
""" Image to be convolved """
image = input_images[:, :, channel, image_num]
""" Convolve image with the feature and add to existing matrix """
convolved_image = convolved_image + scipy.signal.convolve2d(image, feature, 'valid');
""" Take sigmoid transform and store """
convolved_image = self.sigmoid(convolved_image + self.b[feature_num, 0])
convolved_features[feature_num, image_num, :, :] = convolved_image
return convolved_features
#######################################################################################
""" Pools the given convolved features """
def pool(self, convolved_features):
""" Extract useful values """
num_features = convolved_features.shape[0]
num_images = convolved_features.shape[1]
conv_dim = convolved_features.shape[2]
res_dim = conv_dim / self.pool_dim
""" Initialize pooled features as array of zeros """
pooled_features = numpy.zeros((num_features, num_images, res_dim, res_dim))
for image_num in range(num_images):
for feature_num in range(num_features):
for pool_row in range(res_dim):
row_start = pool_row * self.pool_dim
row_end = row_start + self.pool_dim
for pool_col in range(res_dim):
col_start = pool_col * self.pool_dim
col_end = col_start + self.pool_dim
""" Extract image patch and calculate mean pool """
patch = convolved_features[feature_num, image_num, row_start : row_end,
col_start : col_end]
pooled_features[feature_num, image_num, pool_row, pool_col] = numpy.mean(patch)
return pooled_features
###########################################################################################
""" The Softmax Regression class """
class SoftmaxRegression(object):
#######################################################################################
""" Initialization of Regressor object """
def __init__(self, input_size, num_classes, lamda):
""" Initialize parameters of the Regressor object """
self.input_size = input_size # input vector size
self.num_classes = num_classes # number of classes
self.lamda = lamda # weight decay parameter
""" Randomly initialize the class weights """
rand = numpy.random.RandomState(int(time.time()))
self.theta = 0.005 * numpy.asarray(rand.normal(size = (num_classes*input_size, 1)))
#######################################################################################
""" Returns the groundtruth matrix for a set of labels """
def getGroundTruth(self, labels):
""" Prepare data needed to construct groundtruth matrix """
labels = numpy.array(labels).flatten()
data = numpy.ones(len(labels))
indptr = numpy.arange(len(labels)+1)
""" Compute the groundtruth matrix and return """
ground_truth = scipy.sparse.csr_matrix((data, labels, indptr))
ground_truth = numpy.transpose(ground_truth.todense())
return ground_truth
#######################################################################################
""" Returns the cost and gradient of 'theta' at a particular 'theta' """
def softmaxCost(self, theta, input, labels):
""" Compute the groundtruth matrix """
ground_truth = self.getGroundTruth(labels)
""" Reshape 'theta' for ease of computation """
theta = theta.reshape(self.num_classes, self.input_size)
""" Compute the class probabilities for each example """
theta_x = numpy.dot(theta, input)
hypothesis = numpy.exp(theta_x)
probabilities = hypothesis / numpy.sum(hypothesis, axis = 0)
""" Compute the traditional cost term """
cost_examples = numpy.multiply(ground_truth, numpy.log(probabilities))
traditional_cost = -(numpy.sum(cost_examples) / input.shape[1])
""" Compute the weight decay term """
theta_squared = numpy.multiply(theta, theta)
weight_decay = 0.5 * self.lamda * numpy.sum(theta_squared)
""" Add both terms to get the cost """
cost = traditional_cost + weight_decay
""" Compute and unroll 'theta' gradient """
theta_grad = -numpy.dot(ground_truth - probabilities, numpy.transpose(input))
theta_grad = theta_grad / input.shape[1] + self.lamda * theta
theta_grad = numpy.array(theta_grad)
theta_grad = theta_grad.flatten()
return [cost, theta_grad]
#######################################################################################
""" Returns predicted classes for a set of inputs """
def softmaxPredict(self, theta, input):
""" Reshape 'theta' for ease of computation """
theta = theta.reshape(self.num_classes, self.input_size)
""" Compute the class probabilities for each example """
theta_x = numpy.dot(theta, input)
hypothesis = numpy.exp(theta_x)
probabilities = hypothesis / numpy.sum(hypothesis, axis = 0)
""" Give the predictions based on probability values """
predictions = numpy.zeros((input.shape[1], 1))
predictions[:, 0] = numpy.argmax(probabilities, axis = 0)
return predictions
###########################################################################################
""" Loads the training images and labels """
def loadTrainingDataset():
""" Loads the images and labels as numpy arrays
The dataset is originally read as a dictionary """
train_data = scipy.io.loadmat('stlTrainSubset.mat')
train_images = numpy.array(train_data['trainImages'])
train_labels = numpy.array(train_data['trainLabels'])
return [train_images, train_labels]
###########################################################################################
""" Loads the test images and labels """
def loadTestDataset():
""" Loads the images and labels as numpy arrays
The dataset is originally read as a dictionary """
test_data = scipy.io.loadmat('stlTestSubset.mat')
test_images = numpy.array(test_data['testImages'])
test_labels = numpy.array(test_data['testLabels'])
return [test_images, test_labels]
###########################################################################################
""" Visualizes the obtained optimal W1 values as images """
def visualizeW1(opt_W1, vis_patch_side, hid_patch_side):
""" Add the weights as a matrix of images """
figure, axes = matplotlib.pyplot.subplots(nrows = hid_patch_side,
ncols = hid_patch_side)
""" Rescale the values from [-1, 1] to [0, 1] """
opt_W1 = (opt_W1 + 1) / 2
""" Define useful values """
index = 0
limit0 = 0
limit1 = limit0 + vis_patch_side * vis_patch_side
limit2 = limit1 + vis_patch_side * vis_patch_side
limit3 = limit2 + vis_patch_side * vis_patch_side
for axis in axes.flat:
""" Initialize image as array of zeros """
img = numpy.zeros((vis_patch_side, vis_patch_side, 3))
""" Divide the rows of parameter values into image channels """
img[:, :, 0] = opt_W1[index, limit0 : limit1].reshape(vis_patch_side, vis_patch_side)
img[:, :, 1] = opt_W1[index, limit1 : limit2].reshape(vis_patch_side, vis_patch_side)
img[:, :, 2] = opt_W1[index, limit2 : limit3].reshape(vis_patch_side, vis_patch_side)
""" Plot the image on the figure """
image = axis.imshow(img, interpolation = 'nearest')
axis.set_frame_on(False)
axis.set_axis_off()
index += 1
""" Show the obtained plot """
matplotlib.pyplot.show()
###########################################################################################
""" Returns pooled features for the provided data from a trained network """
def getPooledFeatures(network, images, num_features, res_dim, step_size):
num_images = images.shape[3]
""" Initialize pooled features as array of zeros """
pooled_features_data = numpy.zeros((num_features, num_images, res_dim, res_dim))
for step in range(num_images / step_size):
""" Limits to access batch of images """
limit0 = step_size * step
limit1 = step_size * (step+1)
image_batch = images[:, :, :, limit0 : limit1]
""" Calculate pooled features for the image batch """
convolved_features = network.convolve(image_batch, num_features)
pooled_features = network.pool(convolved_features)
pooled_features_data[:, limit0 : limit1, :, :] = pooled_features
""" Avoid memory overflow """
del(image_batch)
del(convolved_features)
del(pooled_features)
""" Reshape data for training / testing """
input_size = pooled_features_data.size / num_images
pooled_features_data = numpy.transpose(pooled_features_data, (0, 2, 3, 1))
pooled_features_data = pooled_features_data.reshape(input_size, num_images)
return pooled_features_data
###########################################################################################
""" Loads data, trains the Convolutional Neural Network model and predicts classes for test data """
def executeConvolutionalNeuralNetwork():
""" Initialize parameters for the Convolutional Neural Network model """
image_dim = 64 # dimension of the input images
image_channels = 3 # number of channels in the image patches
vis_patch_side = 8 # side length of sampled image patches
hid_patch_side = 20 # side length of representative image patches
pool_dim = 19 # dimension of patches taken while pooling
visible_size = vis_patch_side * vis_patch_side * image_channels # number of input units
hidden_size = hid_patch_side * hid_patch_side # number of hidden units
res_dim = (image_dim - vis_patch_side + 1) / pool_dim # dimension of pooled features
""" Load parameters learned in the SparseAutoencoderLinear exercise """
opt_param = numpy.load('opt_param.npy')
zca_white = numpy.load('zca_white.npy')
mean_patch = numpy.load('mean_patch.npy')
""" Limits to access 'W1' and 'b1' """
limit0 = 0
limit1 = hidden_size * visible_size
limit2 = 2 * hidden_size * visible_size
limit3 = 2 * hidden_size * visible_size + hidden_size
""" Extract 'W1' and 'b1' from the learned parameters """
opt_W1 = opt_param[limit0 : limit1].reshape(hidden_size, visible_size)
opt_b1 = opt_param[limit2 : limit3].reshape(hidden_size, 1)
""" Visualize the learned optimal W1 weights """
visualizeW1(numpy.dot(opt_W1, zca_white), vis_patch_side, hid_patch_side)
""" Initialize Convolutional Neural Network model """
network = ConvolutionalNeuralNetwork(opt_W1, opt_b1, zca_white, mean_patch, vis_patch_side, pool_dim)
""" Step size for the pooling process
Pooling done iteratively to avoid memory overflow """
step_size = 50
""" Load training and test data
Labels are mapped from [1, 2, 3, 4] to [0, 1, 2, 3] """
train_images, train_labels = loadTrainingDataset()
test_images, test_labels = loadTestDataset()
train_labels = train_labels - 1
test_labels = test_labels - 1
""" Get pooled features for training and test data """
softmax_train_data = getPooledFeatures(network, train_images, hidden_size, res_dim, step_size)
softmax_test_data = getPooledFeatures(network, test_images, hidden_size, res_dim, step_size)
""" Initialize parameters of the Regressor """
input_size = hidden_size * res_dim * res_dim # input vector size
num_classes = 4 # number of classes
lamda = 0.0001 # weight decay parameter
max_iterations = 200 # number of optimization iterations
""" Initialize Softmax Regressor with the above parameters """
regressor = SoftmaxRegression(input_size, num_classes, lamda)
""" Run the L-BFGS algorithm to get the optimal parameter values """
opt_solution = scipy.optimize.minimize(regressor.softmaxCost, regressor.theta,
args = (softmax_train_data, train_labels,), method = 'L-BFGS-B',
jac = True, options = {'maxiter': max_iterations})
opt_theta = opt_solution.x
""" Obtain predictions from the trained model """
predictions = regressor.softmaxPredict(opt_theta, softmax_test_data)
""" Print accuracy of the trained model """
correct = test_labels[:, 0] == predictions[:, 0]
print """Accuracy :""", numpy.mean(correct)
executeConvolutionalNeuralNetwork()