diff --git a/geodetics.cabal b/geodetics.cabal index 23766b0..e321b9b 100644 --- a/geodetics.cabal +++ b/geodetics.cabal @@ -1,12 +1,12 @@ name: geodetics -version: 0.0.6 +version: 0.1.0 cabal-version: >= 1.10 build-type: Simple author: Paul Johnson -data-files: - AddingProjections.txt, - LICENSE, - README.md, +data-files: + AddingProjections.txt, + LICENSE, + README.md, ToDo.txt license: BSD3 copyright: Paul Johnson 2015. @@ -15,13 +15,13 @@ description: Precise geographical coordinates (latitude & longitude), with co different reference frames and projections. . Certain distinguished reference frames and grids are given distinct - types so that coordinates expressed within them cannot be confused with + types so that coordinates expressed within them cannot be confused with from coordinates in other frames. license-file: LICENSE maintainer: Paul Johnson homepage: https://github.com/PaulJohnson/geodetics category: Geography -tested-with: GHC==7.10.2 +tested-with: GHC==8.6.3 source-repository head type: git @@ -29,14 +29,13 @@ source-repository head library hs-source-dirs: src - build-depends: - base >= 4.7 && < 5, - dimensional >= 1.0, - array >= 0.4 - if !impl(ghc>=8.0) - build-depends: semigroups >= 0.9 && < 0.19 + build-depends: + base >= 4.7, + dimensional >= 1.3, + array >= 0.4, + semigroups >= 0.9 ghc-options: -Wall - exposed-modules: + exposed-modules: Geodetics.Altitude, Geodetics.Ellipsoids, Geodetics.Geodetic, @@ -53,18 +52,18 @@ test-suite GeodeticTest main-is: Main.hs x-uses-tf: true build-depends: geodetics, - base >= 4.6 && < 5, + base >= 4.6, HUnit >= 1.2, - dimensional >= 0.13, + dimensional >= 1.3, QuickCheck >= 2.4, test-framework >= 0.4.1, test-framework-quickcheck2, test-framework-hunit, array >= 0.4, checkers - hs-source-dirs: + hs-source-dirs: test ghc-options: -Wall -rtsopts - other-modules: + other-modules: ArbitraryInstances Default-Language: Haskell2010 diff --git a/src/Geodetics/Ellipsoids.hs b/src/Geodetics/Ellipsoids.hs index c4a1597..30ca167 100644 --- a/src/Geodetics/Ellipsoids.hs +++ b/src/Geodetics/Ellipsoids.hs @@ -1,6 +1,21 @@ -{-# LANGUAGE FlexibleContexts, TypeOperators, TypeFamilies #-} - -{- | An Ellipsoid is a reasonable best fit for the surface of the +{-# LANGUAGE ConstraintKinds #-} +{-# LANGUAGE DataKinds #-} +{-# LANGUAGE DeriveDataTypeable #-} +{-# LANGUAGE DeriveGeneric #-} +{-# LANGUAGE FlexibleContexts #-} +{-# LANGUAGE FlexibleInstances #-} +{-# LANGUAGE GeneralizedNewtypeDeriving #-} +{-# LANGUAGE KindSignatures #-} +{-# LANGUAGE NoImplicitPrelude #-} +{-# LANGUAGE PatternGuards #-} +{-# LANGUAGE RankNTypes #-} +{-# LANGUAGE RoleAnnotations #-} +{-# LANGUAGE ScopedTypeVariables #-} +{-# LANGUAGE StandaloneDeriving #-} +{-# LANGUAGE TypeFamilies #-} +{-# LANGUAGE TypeOperators #-} + +{- | An Ellipsoid is a reasonable best fit for the surface of the Earth over some defined area. WGS84 is the standard used for the whole of the Earth. Other Ellipsoids are considered a best fit for some specific area. @@ -43,7 +58,8 @@ import Data.Monoid (Monoid) import Data.Semigroup (Semigroup, (<>)) import Numeric.Units.Dimensional import Numeric.Units.Dimensional.Prelude -import Prelude () -- Numeric instances. +import qualified Numeric.Units.Dimensional.Dimensions.TypeLevel as T +-- import Prelude () -- Numeric instances. -- | 3d vector as @(X,Y,Z)@. @@ -55,7 +71,7 @@ type Matrix3 a = Vec3 (Vec3 a) -- | Multiply a vector by a scalar. scale3 :: (Num a) => - Vec3 (Quantity d a) -> Quantity d' a -> Vec3 (Quantity (d * d') a) + Vec3 (Quantity d a) -> Quantity d' a -> Vec3 (Quantity (d T.* d') a) scale3 (x,y,z) s = (x*s, y*s, z*s) @@ -70,7 +86,7 @@ add3 (x1,y1,z1) (x2,y2,z2) = (x1+x2, y1+y2, z1+z2) -- | Multiply a matrix by a vector in the Dimensional type system. transform3 :: (Num a) => - Matrix3 (Quantity d a) -> Vec3 (Quantity d' a) -> Vec3 (Quantity (d*d') a) + Matrix3 (Quantity d a) -> Vec3 (Quantity d' a) -> Vec3 (Quantity (d T.* d') a) transform3 (tx,ty,tz) v = (t tx v, t ty v, t tz v) where t (x1,y1,z1) (x2,y2,z2) = x1*x2 + y1*y2 + z1*z2 @@ -78,7 +94,7 @@ transform3 (tx,ty,tz) v = (t tx v, t ty v, t tz v) -- | Inverse of a 3x3 matrix. invert3 :: (Fractional a) => - Matrix3 (Quantity d a) -> Matrix3 (Quantity ((d*d)/(d*d*d)) a) + Matrix3 (Quantity d a) -> Matrix3 (Quantity ((d T.* d)/(d T.* d T.* d)) a) invert3 ((x1,y1,z1), (x2,y2,z2), (x3,y3,z3)) = @@ -96,12 +112,12 @@ trans3 ((x1,y1,z1),(x2,y2,z2),(x3,y3,z3)) = ((x1,x2,x3),(y1,y2,y3),(z1,z2,z3)) -- | Dot product of two vectors dot3 :: (Num a) => - Vec3 (Quantity d1 a) -> Vec3 (Quantity d2 a) -> Quantity (d1 * d2) a + Vec3 (Quantity d1 a) -> Vec3 (Quantity d2 a) -> Quantity (d1 T.* d2) a dot3 (x1,y1,z1) (x2,y2,z2) = x1*x2 + y1*y2 + z1*z2 -- | Cross product of two vectors cross3 :: (Num a) => - Vec3 (Quantity d1 a) -> Vec3 (Quantity d2 a) -> Vec3 (Quantity (d1 * d2) a) + Vec3 (Quantity d1 a) -> Vec3 (Quantity d2 a) -> Vec3 (Quantity (d1 T.* d2) a) cross3 (x1,y1,z1) (x2,y2,z2) = (y1*z2 - z1*y2, z1*x2 - x1*z2, x1*y2 - y1*x2) @@ -122,8 +138,8 @@ instance Monoid Helmert where -- | The inverse of a Helmert transformation. inverseHelmert :: Helmert -> Helmert -inverseHelmert h = Helmert (negate $ cX h) (negate $ cY h) (negate $ cZ h) - (negate $ helmertScale h) +inverseHelmert h = Helmert (negate $ cX h) (negate $ cY h) (negate $ cZ h) + (negate $ helmertScale h) (negate $ rX h) (negate $ rY h) (negate $ rZ h) @@ -141,16 +157,16 @@ applyHelmert h (x,y,z) = ( s = _1 + helmertScale h * (1e-6 *~ one) --- | An Ellipsoid is defined by the major radius and the inverse flattening (which define its shape), +-- | An Ellipsoid is defined by the major radius and the inverse flattening (which define its shape), -- and its Helmert transform relative to WGS84 (which defines its position and orientation). -- --- The inclusion of the Helmert parameters relative to WGS84 actually make this a Terrestrial +-- The inclusion of the Helmert parameters relative to WGS84 actually make this a Terrestrial -- Reference Frame (TRF), but the term "Ellipsoid" will be used in this library for readability. -- -- Minimum definition: @majorRadius@, @flatR@ & @helmert@. --- +-- -- Laws: --- +-- -- > helmertToWGS84 = applyHelmert . helmert -- > helmertFromWGS84 e . helmertToWGS84 e = id class (Show a, Eq a) => Ellipsoid a where @@ -159,7 +175,7 @@ class (Show a, Eq a) => Ellipsoid a where -- ^ Inverse of the flattening. helmert :: a -> Helmert helmertToWSG84 :: a -> ECEF -> ECEF - -- ^ The Helmert transform that will convert a position wrt + -- ^ The Helmert transform that will convert a position wrt -- this ellipsoid into a position wrt WGS84. helmertToWSG84 e = applyHelmert (helmert e) helmertFromWSG84 :: a -> ECEF -> ECEF @@ -168,9 +184,9 @@ class (Show a, Eq a) => Ellipsoid a where -- | The WGS84 geoid, major radius 6378137.0 meters, flattening = 1 / 298.257223563 --- as defined in \"Technical Manual DMA TM 8358.1 - Datums, Ellipsoids, Grids, and +-- as defined in \"Technical Manual DMA TM 8358.1 - Datums, Ellipsoids, Grids, and -- Grid Reference Systems\" at the National Geospatial-Intelligence Agency (NGA). --- +-- -- The WGS84 has a special place in this library as the standard Ellipsoid against -- which all others are defined. data WGS84 = WGS84 @@ -179,15 +195,15 @@ instance Eq WGS84 where _ == _ = True instance Show WGS84 where show _ = "WGS84" - + instance Ellipsoid WGS84 where majorRadius _ = 6378137.0 *~ meter flatR _ = 298.257223563 *~ one helmert _ = mempty helmertToWSG84 _ = id helmertFromWSG84 _ = id - - + + -- | Ellipsoids other than WGS84, used within a defined geographical area where -- they are a better fit to the local geoid. Can also be used for historical ellipsoids. -- @@ -200,7 +216,7 @@ data LocalEllipsoid = LocalEllipsoid { helmertLocal :: Helmert } deriving (Eq) instance Show LocalEllipsoid where - show = nameLocal + show = nameLocal instance Ellipsoid LocalEllipsoid where majorRadius = majorRadiusLocal @@ -226,26 +242,26 @@ eccentricity'2 :: (Ellipsoid e) => e -> Dimensionless Double eccentricity'2 e = (f * (_2 - f)) / (_1 - f * f) where f = flattening e --- | Distance from the surface at the specified latitude to the --- axis of the Earth straight down. Also known as the radius of +-- | Distance from the surface at the specified latitude to the +-- axis of the Earth straight down. Also known as the radius of -- curvature in the prime vertical, and often denoted @N@. normal :: (Ellipsoid e) => e -> Angle Double -> Length Double normal e lat = majorRadius e / sqrt (_1 - eccentricity2 e * sin lat ^ pos2) --- | Radius of the circle of latitude: the distance from a point +-- | Radius of the circle of latitude: the distance from a point -- at that latitude to the axis of the Earth. latitudeRadius :: (Ellipsoid e) => e -> Angle Double -> Length Double latitudeRadius e lat = normal e lat * cos lat --- | Radius of curvature in the meridian at the specified latitude. +-- | Radius of curvature in the meridian at the specified latitude. -- Often denoted @M@. meridianRadius :: (Ellipsoid e) => e -> Angle Double -> Length Double -meridianRadius e lat = - majorRadius e * (_1 - eccentricity2 e) +meridianRadius e lat = + majorRadius e * (_1 - eccentricity2 e) / sqrt ((_1 - eccentricity2 e * sin lat ^ pos2) ^ pos3) - + -- | Radius of curvature of the ellipsoid perpendicular to the meridian at the specified latitude. primeVerticalRadius :: (Ellipsoid e) => e -> Angle Double -> Length Double @@ -253,11 +269,11 @@ primeVerticalRadius e lat = majorRadius e / sqrt (_1 - eccentricity2 e * sin lat ^ pos2) --- | The isometric latitude. The isometric latitude is conventionally denoted by ψ --- (not to be confused with the geocentric latitude): it is used in the development --- of the ellipsoidal versions of the normal Mercator projection and the Transverse --- Mercator projection. The name "isometric" arises from the fact that at any point --- on the ellipsoid equal increments of ψ and longitude λ give rise to equal distance +-- | The isometric latitude. The isometric latitude is conventionally denoted by ψ +-- (not to be confused with the geocentric latitude): it is used in the development +-- of the ellipsoidal versions of the normal Mercator projection and the Transverse +-- Mercator projection. The name "isometric" arises from the fact that at any point +-- on the ellipsoid equal increments of ψ and longitude λ give rise to equal distance -- displacements along the meridians and parallels respectively. isometricLatitude :: (Ellipsoid e) => e -> Angle Double -> Angle Double isometricLatitude ellipse lat = atanh sinLat - e * atanh (e * sinLat) diff --git a/stack.yaml b/stack.yaml index 2a42c7c..555c8c8 100644 --- a/stack.yaml +++ b/stack.yaml @@ -7,15 +7,8 @@ # Resolver to choose a 'specific' stackage snapshot or a compiler version. # A snapshot resolver dictates the compiler version and the set of packages # to be used for project dependencies. For example: -# -# resolver: lts-3.5 -# resolver: nightly-2015-09-21 -# resolver: ghc-7.10.2 -# resolver: ghcjs-0.1.0_ghc-7.10.2 -# resolver: -# name: custom-snapshot -# location: "./custom-snapshot.yaml" -resolver: lts-11.4 + +resolver: lts-13.2 # User packages to be built. # Various formats can be used as shown in the example below. @@ -39,7 +32,9 @@ packages: - . # Dependency packages to be pulled from upstream that are not in the resolver # (e.g., acme-missiles-0.3) -# extra-deps: [] +extra-deps: [ + dimensional-1.3 + ] # Override default flag values for local packages and extra-deps # flags: {}