-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
58 lines (46 loc) · 1.85 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import imageio
import numpy as np
import torch
from torch.utils.data import DataLoader
from dataloader import DeepTrackDataset
from model import DeepTrackerLSTM
from weightedBCECriterion import WeightedBCE
epochs = 25
seq_len = 100
batch_size = 1 # DO NOT CHANGE
img_dim = 51
print_interval = 10
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
dt = DeepTrackerLSTM((3, batch_size, 16, img_dim, img_dim), False, False).to(device)
optimizer = torch.optim.Adagrad(dt.parameters(), 0.01)
dataset = DeepTrackDataset('./data.t7', seq_len)
data = DataLoader(dataset, batch_size, shuffle=True, num_workers=4, pin_memory=True)
bce_loss = WeightedBCE().to(device)
zero_tensor = torch.zeros((batch_size, 2, img_dim, img_dim)).to(device)
def visualize(model, sequence, epoch_no):
model.init_hidden()
outputs = []
with torch.no_grad():
for inp in sequence:
output = model(torch.unsqueeze(inp, 0).to(device)).data
output_np = np.array(output)[0][0] * 255
outputs.append(output_np.astype('uint8'))
imageio.mimsave('./saved_gifs/gif_' + str(epoch_no + 1) + '.gif', outputs)
for i in range(epochs):
epoch_loss = 0
for batch_no, batch in enumerate(data):
dt.hidden = dt.init_hidden()
dt.zero_grad()
loss = 0
target = batch.transpose(0, 1).to(device)
for j in range(seq_len):
output = dt(zero_tensor if j % 10 >= 5 else target[j])
loss += bce_loss(target[j], output)
epoch_loss += loss.data
loss.backward()
optimizer.step()
if batch_no % print_interval == 0:
print("Epoch: %d, Batch no: %d, Batch Loss: %f" % (i, batch_no, loss.data))
print("Epoch: %d, Epoch Loss: %f" % (i, epoch_loss / len(data)))
visualize(dt, dataset[0], i)
torch.save(dt, './saved_models/model_' + str(i + 1) + '.pt')