-
Notifications
You must be signed in to change notification settings - Fork 3
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Dummy Model Creation #118
Comments
I've been looking into Stress testing argo. Theres a stress image here: https://hub.docker.com/r/progrium/stress/ i created a template in argo to use it and heres an example monai workflow using that template. Monai workflow template{
"name": "stres workflow",
"version": "1.0.0",
"description": "Attempt at making a workflow",
"informatics_gateway": {
"ae_title": "MonaiSCU",
"data_origins": [
"MY_SCANNER"
],
"export_destinations": [
"PROD_PACS"
]
},
"tasks": [
{
"id": "argo-task",
"description": "trigger simple argo workflow",
"type": "argo",
"args": {
"namespace":"argo",
"workflow_template_name": "delightful-bear",
"server_url": "https://localhost:2746",
"allow_insecure": true,
"messaging_endpoint": "rabbit-monai",
"messaging_username" : "admin",
"messaging_password" : "admin",
"messaging_topic" : "md.tasks.callback",
"messaging_exchange" : "monaideploy",
"messaging_vhost" : "monaideploy",
"parameters": "{ \"cpu\":\"2\", \"io\":\"2\", \"vm\":\"2\", \"timeout\":\"15s\", \"vmbytes\": \"128M\" }"
},
"artifacts": {
"input": [
{
"name": "input_diacom",
"value": "{{ context.input.dicom }}/input_dicom"
}
],
"output": [
{
"name": "report",
"value": "{{ context.output }}/report",
"Mandatory": false
}
]
}
}
]
} Argo workflow template{
"metadata": {
"name": "delightful-bear",
"namespace": "argo",
"uid": "33721971-6ce8-45ff-ad2e-d468138d8d02",
"resourceVersion": "1784231",
"generation": 14,
"creationTimestamp": "2022-08-30T14:22:05Z",
"labels": {
"example": "true",
"workflows.argoproj.io/creator": "system-serviceaccount-argo-argo-server"
},
"managedFields": [
{
"manager": "argo",
"operation": "Update",
"apiVersion": "argoproj.io/v1alpha1",
"time": "2022-08-30T14:22:05Z",
"fieldsType": "FieldsV1",
"fieldsV1": {
"f:metadata": {
"f:labels": {
".": {},
"f:example": {},
"f:workflows.argoproj.io/creator": {}
}
},
"f:spec": {}
}
}
]
},
"spec": {
"templates": [
{
"name": "stress",
"inputs": {
"parameters": [
{
"name": "cpu",
"value": "{{workflow.parameters.cpu}}"
},
{
"name": "io",
"value": "{{workflow.parameters.io}}"
},
{
"name": "vm",
"value": "{{workflow.parameters.vm}}"
},
{
"name": "vmbytes",
"value": "{{workflow.parameters.vmbytes}}"
},
{
"name": "timeout",
"value": "{{workflow.parameters.timeout}}"
}
]
},
"outputs": {},
"metadata": {},
"container": {
"name": "main",
"image": "progrium/stress",
"command": [
"stress"
],
"args": [
"--cpu",
"{{inputs.parameters.cpu}}",
"--io",
"{{inputs.parameters.io}}",
"--vm-bytes",
"{{inputs.parameters.vmbytes}}",
"--vm",
"{{inputs.parameters.vm}}",
"--timeout",
"{{inputs.parameters.timeout}}"
],
"resources": {}
}
}
],
"entrypoint": "stress",
"arguments": {
"parameters": [
{
"name": "cpu",
"value": "1"
},
{
"name": "io",
"value": "1"
},
{
"name": "vm",
"value": "1"
},
{
"name": "timeout",
"value": "15s"
},
{
"name": "vmbytes",
"value": "64M"
}
]
},
"ttlStrategy": {
"secondsAfterCompletion": 300
},
"podGC": {
"strategy": "OnPodCompletion"
},
"workflowMetadata": {
"labels": {
"example": "true"
}
}
}
} |
@lillie-dae created a composite Docker image containing both the stress tool mentioned above and a GPU Burn tool. I will migrate the DockerFile for this into the Performance Testing area of the MONAI deploy repo. |
Descripton
Create Models of different sizes and configurations so that we can fully test the MWM functionality and performance. There was a mean pixel calc which was used for testing DICOM inout and output in legacy AIDE. The limitation on this model was that the execution was so quick that it did not stress the system. The new models must not have this same limitation.
Acceptance Criteria
Original ticket from @laurencejackson - Project-MONAI/monai-deploy#63
The text was updated successfully, but these errors were encountered: