-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvisualize.py
120 lines (95 loc) · 4.93 KB
/
visualize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import numpy as np
from dataset import get_rotate_mat
import matplotlib.pyplot as plt
import lanms
import cv2
def draw_bbox(image, bbox, color=(0, 0, 255), thickness=1, thickness_sub=None, double_lined=False,
write_point_numbers=False):
"""이미지에 하나의 bounding box를 그려넣는 함수
"""
thickness_sub = thickness_sub or thickness * 3
basis = max(image.shape[:2])
fontsize = basis / 1500
x_offset, y_offset = int(fontsize * 12), int(fontsize * 10)
color_sub = (255 - color[0], 255 - color[1], 255 - color[2])
points = [(int(np.rint(p[0])), int(np.rint(p[1]))) for p in bbox]
for idx in range(len(points)):
if double_lined:
cv2.line(image, points[idx], points[(idx + 1) % len(points)], color_sub,
thickness=thickness_sub)
cv2.line(image, points[idx], points[(idx + 1) % len(points)], color, thickness=thickness)
if write_point_numbers:
for idx in range(len(points)):
loc = (points[idx][0] - x_offset, points[idx][1] - y_offset)
if double_lined:
cv2.putText(image, str(idx), loc, cv2.FONT_HERSHEY_SIMPLEX, fontsize, color_sub,
thickness_sub, cv2.LINE_AA)
cv2.putText(image, str(idx), loc, cv2.FONT_HERSHEY_SIMPLEX, fontsize, color, thickness,
cv2.LINE_AA)
def draw_bboxes(image, bboxes, color=(0, 0, 255), thickness=1, thickness_sub=None,
double_lined=False, write_point_numbers=False):
"""이미지에 다수의 bounding box들을 그려넣는 함수
"""
for bbox in bboxes:
draw_bbox(image, bbox, color=color, thickness=thickness, thickness_sub=thickness_sub,
double_lined=double_lined, write_point_numbers=write_point_numbers)
def drawimgbbox(image, score_map, geo_map, orig_size):
visualize_single_sample = True
SAMPLE_POINT_IDX = 200
NMS_THRES = 0.2
SCORE_THRES = 0.9
MAP_SCALE = 0.25
INV_MAP_SCALE = int(1 / MAP_SCALE)
FIG_SIZE = (8, 8)
INPUT_SIZE = 1024
xy_text = np.argwhere(score_map > SCORE_THRES)[:, ::-1].copy() # (n x 2)
if xy_text.size == 0:
bboxes = np.zeros((0, 4, 2), dtype=np.float32)
else:
xy_text = xy_text[np.argsort(xy_text[:, 1])] # Row-wise로 정렬
valid_pos = xy_text * INV_MAP_SCALE
valid_geo = geo_map[xy_text[:, 1], xy_text[:, 0], :] # (n x 5)
indices, bboxes = [], []
for idx, ((x, y), g) in enumerate(zip(valid_pos, valid_geo)):
y_min, y_max = y - g[0], y + g[1]
x_min, x_max = x - g[2], x + g[3]
rotate_mat = get_rotate_mat(-g[4])
bbox = np.array([[x_min, y_min], [x_max, y_min], [x_max, y_max], [x_min, y_max]], dtype=np.float32)
anchor = np.array([x, y], dtype=np.float32).reshape(2, 1)
rotated_bbox = (np.dot(rotate_mat, bbox.T - anchor) + anchor).T
if visualize_single_sample and idx == SAMPLE_POINT_IDX:
vis = score_map.copy() * 255
vis = cv2.cvtColor(vis, cv2.COLOR_GRAY2RGB).astype(np.uint8)
draw_bboxes(vis, bbox.reshape(-1, 4, 2) * MAP_SCALE, thickness=2)
draw_bboxes(vis, rotated_bbox.reshape(-1, 4, 2) * MAP_SCALE, color=(0, 255, 0), thickness=2)
ref_point = np.array([x, y]) * MAP_SCALE
cv2.circle(vis, (int(ref_point[0]), int(ref_point[1])), 2, (255, 0 ,0), 2)
plt.figure(figsize=FIG_SIZE)
plt.imshow(vis)
# 이미지 범위에서 벗어나는 bbox는 탈락
if bbox[:, 0].min() < 0 or bbox[:, 0].max() >= score_map.shape[1] * INV_MAP_SCALE:
continue
elif bbox[:, 1].min() < 0 or bbox[:, 1].max() >= score_map.shape[0] * INV_MAP_SCALE:
continue
indices.append(idx)
bboxes.append(rotated_bbox.flatten())
bboxes = np.array(bboxes)
raw_bboxes = bboxes.reshape(-1, 4, 2)
# 좌표 정보에 Score map에서 가져온 Score를 추가
scored_bboxes = np.zeros((bboxes.shape[0], 9), dtype=np.float32)
scored_bboxes[:, :8] = bboxes
scored_bboxes[:, 8] = score_map[xy_text[indices, 1], xy_text[indices, 0]]
# LA-NMS 적용
nms_bboxes = lanms.merge_quadrangle_n9(scored_bboxes.astype('float32'), NMS_THRES)
nms_bboxes = nms_bboxes[:, :8].reshape(-1, 4, 2)
# 원본 이미지 크기에 맞게 bbox 크기 보정
raw_bboxes *= max(orig_size) / INPUT_SIZE
nms_bboxes *= max(orig_size) / INPUT_SIZE
fig, axs = plt.subplots(ncols=2, nrows=1, figsize=(FIG_SIZE[0] * 2, FIG_SIZE[1]))
plt.suptitle('Before & After NMS Process', fontsize=18, y=0.95)
vis = image.copy()
draw_bboxes(vis, raw_bboxes[::], thickness=2)
axs[0].imshow(vis)
vis = image.copy()
draw_bboxes(vis, nms_bboxes, thickness=2)
axs[1].imshow(vis)