-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcreate_final_esets.Rmd
274 lines (234 loc) · 10.9 KB
/
create_final_esets.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
---
title: "ImmuneSignatures2: Create Final ExpressionSets from Base ExpressionSet"
author: "Evan Henrich and Helen Miller"
output: html_document
params:
outputDir: "/share/files/HIPC/IS2/@files/data/html_outputs"
dataCacheDir: "/share/files/HIPC/IS2/@files/data"
timestamp: ""
---
# Overview
The purpose of this vignette is to generate expressionSets for analysis by HIPC collaborators in the ImmuneSignatures2 project. The base expressionSet includes all age cohorts and is not normalized across study or batch-corrected for issues like different platforms (e.g. Illumina vs Affymetrix). Therefore, expressionSets for analysis are generated for both young and old cohorts that then are cross-study normalized and batch corrected. The cross-study normalization is done by taking a target distribution from one platform (Affymetrix) and applying this to all samples. The batch-correction is done by using a linear-model to determining the effects of platform (e.g. Illumina Human HT-V4), platform vendor (e.g. Illumina), cell type (either Whole Blood or PBMC), and study on baseline data, then removing these effects for all timepoints. Finally each expressionSet comes in a version with or without immune response data. For subjects with multiple immune response data points (due to multiple assays), the preference is given to HAI then NAb then ELISA data.
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE, include = TRUE)
```
```{r load-dependencies}
library(ImmuneSignatures2) # vaccine map loaded as `vaccines`
library(Biobase)
library(dplyr)
library(data.table)
library(titer) # devtools::install_github("stefanavey/titer")
library(limma)
```
```{r output-variables}
outputDir <- params$outputDir
dataCacheDir <- params$dataCacheDir
inputFilenamePrefix <- params$timestamp
outputFilenamePrefix <- params$timestamp
if (!dir.exists(outputDir)) stop("could not find", outputDir)
if (!dir.exists(dataCacheDir)) stop("could not find", dataCacheDir)
```
```{r global-variables}
postVaxDayRanges <- list(
hai = c(20,46),
neut_ab_titer = c(28,90),
elisa = c(21,30)
)
discretizationValues <- list(
"RBA" = c(0.3, 0.4, 0.5),
"MFC" = c(0.3, 0.4)
)
young <- c(18,50)
old <- c(60,91)
ageGroups <- list(
young = young,
old = old,
extendedOld = c(max(young), max(old)),
all = c(min(young), max(old))
)
targetDistributionVendor <- "Affymetrix"
targetDistributionExcludedStudies <- "SDY1293"
```
```{r load-base-data}
immdata_all <- readRDS(file.path(dataCacheDir, paste0(inputFilenamePrefix, "immdata_all.rds")))
noNormEset <- readRDS(file.path(dataCacheDir, paste0(inputFilenamePrefix, "noNormEset.rds")))
```
```{r create-cross-study-normalized-version}
eset.all.norm <- crossStudyNormalize(noNormEset,
targetDistributionVendor,
targetDistributionExcludedStudies)
```
```{r create-variants-of-final-eset}
for(ageGroupName in names(ageGroups)){
ages <- ageGroups[[ageGroupName]]
# No Cross-Study Normalization, No Immune Response Calls
eset.noNorm.noResponse <- filterEsetByAge(noNormEset, ages)
eset.noNorm.noResponse <- removeAllNArows(eset.noNorm.noResponse)
res <- testFinalEset(eset.noNorm.noResponse,
expectResponse = FALSE,
expectNormalization = FALSE,
ages)
checkFinalTestResults(res)
fullSuffix <- paste0(ageGroupName, "_noNorm_eset.rds")
filename <- file.path(dataCacheDir, paste0(outputFilenamePrefix, fullSuffix))
saveRDS(eset.noNorm.noResponse, filename)
write_data_metadata(file.path(dataCacheDir, "dataset_metadata.csv"),
dataset_name = fullSuffix,
data_path = filename,
data = eset.noNorm.noResponse,
include_counts = TRUE)
# With Cross-Study Normalization, No Immune Response Calls
if(grepl("old", ageGroupName, ignore.case = TRUE)){
eset.young.norm <- filterEsetByAge(eset.all.norm, ages = ageGroups[["young"]])
eset.young.norm <- removeAllNArows(eset.young.norm)
eset.old.norm <- filterEsetByAge(eset.all.norm, ages = ageGroups[[ageGroupName]])
eset.old.norm <- removeAllNArows(eset.old.norm)
# Remove studies that do not have young cohorts and cannot be modeled
eset.old.norm <- eset.old.norm[, !eset.old.norm$study_accession %in% c("SDY1368","SDY67") ]
eset.corr.noResponse <- batchCorrect.importedModel(
modelEset = eset.young.norm,
targetEset = eset.old.norm,
batch.vars=c('cell_type',
'featureSetVendor',
'featureSetName2',
'geBatchName'),
covariates = c('y_chrom_present'))
}else{
eset.norm.noResponse <- filterEsetByAge(eset.all.norm, ages)
eset.norm.noResponse <- removeAllNArows(eset.norm.noResponse)
eset.norm.noResponse$age_group <-
factor(ifelse(eset.norm.noResponse$age_imputed < 50, "young", "extendedOld"),
levels = c("young", "extendedOld"))
eset.corr.noResponse <- batchCorrect(
eset.norm.noResponse,
batch.vars = c('cell_type',
'featureSetVendor',
'featureSetName2',
'geBatchName'),
covariates = c('y_chrom_present',
'age_group'))
}
eset.corr.noResponse <- removeAllNArows(eset.corr.noResponse)
eset.corr.noResponse <- eset.corr.noResponse[complete.cases(exprs(eset.corr.noResponse)), ]
res <- testFinalEset(eset.corr.noResponse,
expectResponse = FALSE,
expectNormalization = TRUE,
ages)
checkFinalTestResults(res)
if (grepl("old", ageGroupName, ignore.case = TRUE)) {
fullSuffix <- paste0(ageGroupName, "_norm_batchCorrectedFromYoung_eset.rds")
} else {
fullSuffix <- paste0(ageGroupName, "_norm_eset.rds")
}
filename <- file.path(dataCacheDir, paste0(outputFilenamePrefix, fullSuffix))
saveRDS(eset.corr.noResponse, filename)
write_data_metadata(file.path(dataCacheDir, "dataset_metadata.csv"),
dataset_name = fullSuffix,
data_path = filename,
data = eset.corr.noResponse,
include_counts = TRUE)
# Generate Immune Response Calls
filteredImmdata <- filterImmdataByAge(immdata_all, ages)
immdataWithResponses <- lapply(names(filteredImmdata), function(assay){
dataWithResponses <- generateResponseCall(
assay = assay,
data = filteredImmdata[[assay]],
postVaxDayRange = postVaxDayRanges[[assay]],
discretizationValues = discretizationValues
)
})
selectedImmdata <- selectResponsesToUse(immdataWithResponses)
if (ageGroupName == "all") {
filename <- file.path(dataCacheDir, "all_immdata_with_response.rds")
saveRDS(selectedImmdata, filename)
write_data_metadata(file.path(dataCacheDir, "dataset_metadata.csv"),
dataset_name = "all_immdata_with_response.rds",
data_path = filename,
data = selectedImmdata,
include_counts = TRUE)
}
# No Cross-Study Normalization, with Immune Response Calls
eset.noNorm.withResponse <- addResponseData(eset.noNorm.noResponse,
selectedImmdata)
res <- testFinalEset(eset.noNorm.withResponse,
expectResponse = TRUE,
expectNormalization = FALSE,
ages)
checkFinalTestResults(res)
fullSuffix <- paste0(ageGroupName, "_noNorm_withResponse_eset.rds")
filename <- file.path(dataCacheDir, paste0(outputFilenamePrefix, fullSuffix))
saveRDS(eset.noNorm.withResponse, filename)
write_data_metadata(file.path(dataCacheDir, "dataset_metadata.csv"),
dataset_name = fullSuffix,
data_path = filename,
data = eset.noNorm.withResponse,
include_counts = TRUE)
# With Cross-Study Normalization, with Immune Response Calls
eset.corr.withResponse <- addResponseData(eset.corr.noResponse,
selectedImmdata)
res <- testFinalEset(eset.corr.withResponse,
expectResponse = TRUE,
expectNormalization = TRUE,
ages)
checkFinalTestResults(res)
if (grepl("old", ageGroupName, ignore.case = TRUE)) {
fullSuffix <- paste0(ageGroupName, "_norm_batchCorrectedFromYoung_withResponse_eset.rds")
} else {
fullSuffix <- paste0(ageGroupName, "_norm_withResponse_eset.rds")
}
filename <- file.path(dataCacheDir, paste0(outputFilenamePrefix, fullSuffix))
saveRDS(eset.corr.withResponse, filename)
write_data_metadata(file.path(dataCacheDir, "dataset_metadata.csv"),
dataset_name = fullSuffix,
data_path = filename,
data = eset.corr.withResponse,
include_counts = TRUE)
}
```
```{r create-diagnostic-plots, eval = FALSE}
allEset <- readRDS(file.path(dataCacheDir, paste0(outputFilenamePrefix, "all_noNorm_noResponse_eset.rds")))
ychromQCPlot <- qualityControl.failedYchromQC(allEset)
pdf(file = file.path(outputDir, paste0(outputFilenamePrefix, "ychromQC.pdf")),
width = 8.5,
height = 11)
ychromQCPlot
dev.off()
young <- readRDS(file.path(dataCacheDir, paste0(outputFilenamePrefix, "young_norm_noResponse_eset.rds")))
pdf(file = file.path(outputDir, paste0(outputFilenamePrefix, "young_mds_byStudy.pdf")),
width = 8.5,
height = 11)
qualityControl.samplePlot(young)
dev.off()
pdf(file = file.path(outputDir, paste0(outputFilenamePrefix, "young_mds_byYchrom.pdf")),
width = 8.5,
height = 11)
qualityControl.samplePlot(young, colorCol = "y_chrom_present")
dev.off()
pdf(file = file.path(outputDir, paste0(outputFilenamePrefix, "young_pca_byYchrom.pdf")),
width = 8.5,
height = 11)
qualityControl.samplePlot(young, method = "PCA", colorCol = "y_chrom_present")
dev.off()
old <- readRDS(file.path(dataCacheDir, paste0(outputFilenamePrefix, "old_norm_noResponse_eset.rds")))
pdf(file = file.path(outputDir, paste0(outputFilenamePrefix, "old_mds_byStudy.pdf")),
width = 8.5,
height = 11)
qualityControl.samplePlot(old)
dev.off()
pdf(file = file.path(outputDir, paste0(outputFilenamePrefix, "old_mds_byYchrom.pdf")),
width = 8.5,
height = 11)
qualityControl.samplePlot(old, colorCol = "y_chrom_present")
dev.off()
pdf(file = file.path(outputDir, paste0(outputFilenamePrefix, "old_pca_byYchrom.pdf")),
width = 8.5,
height = 11)
qualityControl.samplePlot(old, method = "PCA", colorCol = "y_chrom_present")
dev.off()
extendedOld <- readRDS(file.path(dataCacheDir, paste0(outputFilenamePrefix, "extendedOld_norm_noResponse_eset.rds")))
pdf(file = file.path(outputDir, paste0(outputFilenamePrefix, "extendedOld_mds_byStudy.pdf")),
width = 8.5,
height = 11)
qualityControl.samplePlot(extendedOld)
dev.off()
```