-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathEpiAnalysis.R
executable file
·356 lines (320 loc) · 15 KB
/
EpiAnalysis.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
#!/usr/bin/Rscript
# setwd("~/Documents/3_EpigenomicsData/IHECData/Intraindividual/STL001")
# mode <- "Intraindividual"; group <- "STL001"
# setwd("~/Documents/3_EpigenomicsData/IHECData/Interindividual")
# mode <- "Interindividual"; group <- "Adipose_Derived_Mesenchymal_Stem_Cell_Cultured_Cells"
# setwd("/media/roger/Elements/STL003")
# Combined Epigenetic Analysis Pipeline, v0.1 - This script combinesthe scripts'ChipSeqAnalysis.R' and
# 'MethAnalysis.R' into a single one to perform integrated analysis of epigenome data. To do so, it
# retrieves windows from the PEGH database ('Genomics' table) and calculates the variation in the
# epigenomic landscape.Importantly, it assumes that the filenames follow the Roadmap pattern; files
# from other sources will require modifications in the regex part.
# Nomenclature: 'Group' is the object of the study [donor/tissue]; 'sample' is each individual dataset in that group.
######################
## ARGUMENT PARSING ##
######################
args <- commandArgs(trailingOnly = TRUE) # Import arguments from command line
usage <- function() {
cat ("\nProgram: Epigenomics Analysis Pipeline, v0.1\n")
cat ("\nUsage: EpiAnalysis.R [Mode] [Donor/Tissue]\n")
cat ("File name format (Roadmap style): [University].[CellType].[Mark].[Donor]\n\n")
quit()
}
if (length(args) < 1) {usage()}
if (args[1] == "-h" || args[1] == "--help") {usage()}
mode <- args[1] # Operation mode of the script
group <- args[2] # Donor/tissue group of the analysis
cat(sprintf("%s mode selected",mode))
################################################
## ACCESS MYSQL DATABASE AND RETRIEVE WINDOWS ##
################################################
# WINDOWS IN MYSQL:
suppressMessages(library(RMySQL))
# Retrieve data from MySQL:
con <- dbConnect(RMySQL::MySQL(),
user="root", password="RM333",
dbname="PEGH", host="localhost")
res <- dbSendQuery(con, "SELECT chr,start,end FROM Genomics_Pilot")
windows <- dbFetch(res,n=-1) # n=-1 for no limit in records
invisible(dbClearResult(res)) # Frees resources associated with the query
windows[,2:3] <- apply(windows[,2:3],2,as.numeric) # Make the variable numeric
wsize <- windows[1,3]-windows[1,2] # Windows size
chr <- substr(windows[1,1],4,nchar(windows[1,1])) # Chromosome number
ntotal <- nrow(windows) # Number of windows
# BED is 0-based, but GRanges is 1-based.
if (suppressMessages(!require("GenomicRanges"))) {
print ("The 'GenomicRanges' package is missing and will be installed")
source("https://bioconductor.org/biocLite.R")
biocLite("GenomicRanges")
library("GenomicRanges")
}
gffwindows <- data.frame(chr=windows[,1],start=windows[,2]+1,end=windows[,3])
grwindows <- with(gffwindows,GRanges(chr,IRanges(start,end)))
#######################################
## FUNCTION TO CONVERT WIG TO BIGWIG ##
#######################################
# WARNING: Requires the use of 'bwtool' and 'WigtoBigWig', downloadable here:
# http://hgdownload.cse.ucsc.edu/admin/exe/linux.x86_64/
# https://github.com/CRG-Barcelona/bwtool/wiki
# For 'WigtoBigWig', chromosome sizes are needed. They can be retrieved with
# the aplication 'fetchChromSizes', available in the first directory.
start <- Sys.time()
wigtobw <- function() { # By default, takes all windows
# IF NECESSARY, CREATE BIGWIG:
filechr <- paste(substr(file,1,nchar(file)-2),chr,sep="") # Extracts only chr22
out <- paste(substr(file,1,nchar(file)-7),".bw",sep="")
if (file.exists(out) == FALSE) {
# Select only rows of the chromosome of interest [chr22]:
system(sprintf("gunzip -c %s | awk '/chrom=chr%s/{p=1}/chrom=chr[^%s]/{p=0}p' > %s",file,chr,chr,filechr))
# Transform wig to bigWig:
system(sprintf("wigToBigWig %s hg19.chrom.sizes %s",filechr,out))
file.remove(filechr)
}
return(out)
}
######################################
## FUNCTION TO EXTRACT DATA FROM BW ##
######################################
bwfraction <- function(ini=1,step=ntotal) {
for (file in markfiles) {
tissue.id <- str_match(file,pattern)[,2]
donor.id <- str_match(file,pattern)[,5]
if (anyNA(c(tissue.id,mark,donor.id))) {
cat(sprintf("File %s does not follow the required pattern. Please check with '-h' or '--help'",file))
next;
}
if (mode == "Interindividual" && group == tissue.id) {
sample <- paste("ind_",donor.id,sep="")
} else if (mode == "Intraindividual" && group == donor.id) {
sample <- abbreviate(str_replace_all(tissue.id,"_",""))
} else {
cat(sprintf("File %s not appropriate for the current analysis \n",file));next}
if (sample %in% samples) { # Repeated samples (e.g. two datasets of the same tissue)
cat(sprintf("Warning: the file %s is excluded becahse there is another %s sample",file,sample))
next
}
## EXTRACT DATA FROM BW ##
# Import as a table to R:
system(sprintf("bwtool extract bed windows.bed %s %s -decimals=3",file,paste(file,".wn",sep="")))
tab <- read.table(paste(file,".wn",sep=""),stringsAsFactors = FALSE)
# WARNING: The table is imported to a variable called SAMPLE.
suppressWarnings(assign(sample,lapply(strsplit(tab[,5],","),as.numeric),envir=.GlobalEnv))
## EXTRACT DATA FROM NARROWPEAK ##
if (mark != "Bisulfite-Seq" && !sample %in% samples){ # Only needs to be done once
peakfile <- paste0(substr(file,1,nchar(file)-16),"narrowPeak.gz")
temp <- system(sprintf("gunzip -c %s | grep '%s' | cut -f1,2,3 | sort",peakfile,windows[1,1]),intern=TRUE)
peaks <- read.table(textConnection(temp),sep="\t")
names(peaks) <- c("chr","start","end")
grpeaks <- with(peaks,GRanges(chr,IRanges(start,end)))
grlist <<- c(grlist,GRangesList(grpeaks)) # GRangesList
}
samples <- c(samples,sample)
}
return(samples)
}
# WE CAN INTEGRATE THIS IF THERE IS ONLY ONE SEGMENT OF WINDOWS
################################################
## FUNCTION TO MEASURE EPIGENETIC VARIABILITY ##
################################################
Theta <- function(S,m,n) { # S=Segregating sites; m=total sites; n=number of samples
summ <- 0
for (i in 1:(n-1)) {
summ <- summ + 1/i
}
theta <- (S/m)/summ
return(round(theta,7))
}
Pi <- function(k,m,n) { # Window number
comb <- choose(n,2) # Binomial coefficient = combination without repetition
pi <- k/(comb*m)
return(round(pi,7))
}
episcore <- function(nwin=ntotal,ini=1) { # By default, it takes all the windows
# Preallocate vectors containing the results
meanavg <- numeric(nwin); varavg <- numeric(nwin); meanvar <- numeric(nwin)
pi <- numeric(nwin); theta <- numeric(nwin); nsites <- numeric(nwin)
# Compares the n-line of each window across samples (tissues/donors/species)
for (window in 1:nwin) {
mat <- matrix(nrow=length(samples),ncol=wsize) # Epigenetic diversity matrix
rownames(mat) <- samples
matpeaks <- matrix(0,nrow=length(samples),ncol=wsize) # For Chip-Seq only
print(window+ini-1)
for (sample in samples) { # We add every sample to the matrix
# For Chip-Seq and Methylation, we retrieve intensity data
mat[sample,] <- eval(as.symbol(sample))[[window]]
}
if (mark != "Bisulfite-Seq") {
grwin <- grwindows[window+ini-1]
# For Chip-Seq, we identify with 1 positions of the window that have a peak
fun <- function(x) {overlap <- findOverlaps(query=grwin,subject=x); spans <- ranges(overlap,ranges(grwin),ranges(x))}
spans <- lapply(grlist,fun)
for (sam in 1:nrow(matpeaks)) {
if (length(spans[[sam]]) > 0) {
for (i in 1:length(spans[[sam]])) {
matpeaks[sam,(start(spans[[sam]][i])-start(grwin)):(end(spans[[sam]][i])-start(grwin))] <- 1
}
}
}
}
matclean <- mat[,complete.cases(t(mat))] # We remove positions with NA (non-meth/missing)
## VARIANCE AND SIGNAL INTENSITY ##
if (dim(matclean)[2] == 0) { # No methylated positions in this region
meanavg[window] <- 0
varavg[window] <- 0
meanvar[window] <- 0
next
}
avg <- apply(matclean,1,mean) # Average of methylation in METHYLATION LOCI
meanavg[window] <- mean(avg) # Average of all samples
varavg[window] <- var(avg) # Variance of average across samples
posvar <- apply(matclean,2,var) # Variance across samples in each position
meanvar[window] <- mean(posvar) # Average variance across samples
## METHYLATION POLYMORPHISM ESTIMATORS ##
if (mark == "Bisulfite-Seq") {
cpgsites <- apply(matclean,c(1,2),function(x){if(x>=0.7){x <- 1} # Assigns 1/0/0.5
else if(x < 0.7 && x > 0.3){x <- 0.5} else {0} })
m <- ncol(cpgsites) # Total CpG sites in the window (methylation loci)
n <- length(samples)*2 # "Diploid"
# ECF = Epigenetic Call Format: Only variable positions
ECF <- cpgsites[,apply(cpgsites,2,function(x){!all(x==x[1])}),drop=FALSE]
ki <- apply(ECF,2,function(x) {a <- table(x);
(sum(a[names(a) == 0])*2+sum(a[names(a) == 0.5]))*
(sum(a[names(a) == 1])*2+sum(a[names(a) == 0.5]))})
## OTHER EPIGENETIC MARKS POLYMORPHISM ESTIMATORS ##
} else {
m <- ncol(matpeaks) # Total nucleotides in that window (1000)
n <- nrow(matpeaks) # "Haploid" n
ECF <- matpeaks[,apply(matpeaks,2,function(x){!all(x==x[1])}),drop=FALSE] # Number of sites having variability
ki <- apply(ECF,2,table)
}
if (is.null(ECF)||dim(ECF)[2] == 0) { # No differentially methylated positions in the region
ki <- 0
S <- 0
} else {
k <- sum(ki)
S <- ncol(ECF) # Segregating sites = positions with epigenetic differences
pi[window] <- Pi(k,m,n)
theta[window] <- Theta(S,m,n)
nsites[window] <- S
}
}
epidata <- data.frame(Pi=pi,Theta=theta,S=nsites,Level=meanavg,LevelVar=varavg,Var=meanvar)
#print(Sys.time()-start)
return(epidata)
}
#############################
## ANALYZE FOLDER CONTENTS ##
#############################
library(stringr)
filenames <- list.files(".", pattern=sprintf("%s.+(bigwig$|wig\\.gz$)",group), full.names=TRUE) # Files in the folder
# Roadmap standard: a few donors have IDs with dots
pattern <- "\\.(\\w+)\\.(Bisulfite-Seq|H[A|2B|3|4]K\\d+(me\\d|ac))\\.(\\w+)\\."
marks <- vector()
tissues <- vector()
for (file in filenames) {
tissue <- str_match(file,pattern)[,2]
if (!tissue %in% tissues) {
tissues <- c(tissues,tissue)
}
}
# GROUP THE FILES BY EPIGENETIC MARK:
for (file in filenames) {
mark <- str_match(file,pattern)[,3]
if (is.na(mark)==TRUE) {
cat(sprintf("File %s does not follow the required pattern. Please check with '-h' or '--help' \n",file))
next;
}
if (!mark %in% marks) {
marks <- c(marks,mark)
}
if (mark == "Bisulfite-Seq") {
wigtobw()
}
filenames <- list.files(".", pattern=sprintf("%s.+(bigwig$|bw$)",group), full.names=TRUE) # BigWig files
}
# CALCULATE VARIABILITY FOR EACH MARK:
epidata <- windows[1:ntotal,]
for (mark in marks){
markfiles <- grep(mark,filenames,value=T)
samples <- vector()
# Verifying the number of samples for mark (can be done above):
if (length(markfiles) < 2) {
if (mode == "Intraindividual") {
stop (sprintf("Please provide %s data from more than one tissue",mark))
} else if (mode == "Interindividual") {
stop (sprintf("Please provide %s data from more than one donor",mark))
}
# FRACTIONED ANALYSIS:
} else if (ntotal*wsize < 1000000) { # If the region contains < 500 kb, all is processed at once
write.table(windows[1:ntotal,],file="windows.bed",row.names=FALSE,col.names=FALSE,quote=FALSE,sep="\t")
grlist <- GRangesList()
samples <- bwfraction()
markdata <- episcore()
} else { # If the region contains > 500 kb, the analysis is fractioned
markdata <- data.frame(Pi=numeric(0),Theta=numeric(0),S=numeric(0),Level=numeric(0),LevelVar=numeric(0),Var=numeric(0))
chunk <- 1000000/wsize
for (ini in seq(1,ntotal,by=chunk)) { # REVIEW INTERVAL!!!!
if ((ntotal-ini+1) < chunk) {
# Create 'windows.bed' file for 'bwtools':
chunk <- ntotal%%chunk
}
write.table(windows[ini:(ini+chunk-1),],file="windows.bed",row.names=FALSE,col.names=FALSE,quote=FALSE,sep="\t")
samples <- vector()
grlist <- GRangesList()
samples <- bwfraction(ini=ini,step=chunk)
markdata <- rbind(markdata,episcore(nwin=chunk,ini=ini))
}
}
labels <- c(sprintf("%s_Pi",mark),sprintf("%s_Theta",mark),sprintf("%s_S",mark),sprintf("%s_Level",mark),sprintf("%s_LevelVar",mark),sprintf("%s_Var",mark))
colnames(markdata) <- labels
epidata <- cbind(epidata,markdata) # If no fractions, that can be moved above
}
Sys.time() - start
if (mode == "Intraindividual") {
code <- group # Samples of the study
} else if (mode == "Interindividual") {
code <- abbreviate(str_replace_all(tissue,"_",""))
} else if (mode == "Interspecies") {
code <- abbreviate(str_replace_all(tissue,"_",""))}
#############################
## DATA EXPORT TO MYSQL DB ##
#############################
# New connection: RMySQL does not reconnect if the server goes away
con <- dbConnect(RMySQL::MySQL(),
user="root", password="RM333",
dbname="PEGH", host="localhost")
marks <- paste(marks,collapse=";")
epidata[,4:ncol(epidata)] <- apply(epidata[,4:ncol(epidata)],2,round,5) # ROUND(OPTIONAL)
epidata.name <- paste(substr(mode,1,7),"_",code,sep="")
dbWriteTable(con,epidata.name,epidata,row.names=F,overwrite=T)
## SUMMARY TABLE ##
if (mode == "Interindividual") {
donorlist <- unique(samples) # Combine samples from chip-seq and methylation
sqlquery <- paste("INSERT INTO Interindividual VALUES('"
,epidata.name,"','",code,"','",NROW(samples),"','hg19','Roadmap','",marks,"');",sep="")
print(samples)
} else if (mode == "Intraindividual") {
# Combine samples from chip-seq and methylation
samples <- data.frame(Tissue=names(samples),Abbreviation=unname(samples))
samples <- unique(samples)
sqlquery <- paste("INSERT INTO Intraindividual VALUES('"
,epidata.name,"','",code,"','","Unknown","','",NROW(samples),"','hg19','Roadmap','",marks,"');",sep="")
print(samples)
dbWriteTable(con,"TissueAbbreviations",samples,append=T,row.names=F)
if (!dbExistsTable(con,"TissueAbbreviations")) {
dbSendQuery(con,"ALTER TABLE TissueAbbreviations ADD PRIMARY KEY (Tissue);")
}
}
invisible(dbSendQuery(con,sqlquery))
invisible(dbDisconnect(con))
Sys.time() - start
cat(c(ntotal*wsize,"bases"))
# The -log10(p-value) scores provide a convenient way to threshold signal (e.g. 2 corresponds to a p-value threshold of 1e-2), similar to what is used in identifying enriched regions (peak calling). We recommend using the signal confidence score tracks for visualization. A universal threshold of 2 provides good separation between signal and noise. Both types of signal tracks were also generated for the unconsolidated datasets using the same parameter settings described above.
# Correct name change:
# filenames <- list.files(".", pattern="_repeated", full.names=TRUE) # Files in the folder
# pat <- "(.+)_repeated"
# for (i in filenames) {
# print(i)
# original <- str_match(i,pat)[2]
# file.rename(i,original)
# }