-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
106 lines (87 loc) · 3.2 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
import torch
import torch.nn as nn
"""
Information about architecture_config:
Tuple is organised as (filter_size, out_channels, stride, padding)
String M is representing Maxpooling with stride 2
List is representing group of tuples with the last member being an integer specifying number of repeats
"""
architecture_config = [
(7, 64, 2, 3),
"M",
(3, 192, 1, 1),
"M",
(1, 128, 1, 0),
(3, 256, 1, 1),
(1, 256, 1, 0),
(3, 512, 1, 1),
"M",
[(1, 256, 1, 0), (3, 512, 1, 1), 4],
(1, 512, 1, 0),
(3, 1024, 1, 1),
"M",
[(1, 512, 1, 0), (3, 1024, 1, 1), 2],
(3, 1024, 1, 1),
(3, 1024, 2, 1),
(3, 1024, 1, 1),
(3, 1024, 1, 1),
]
class CNNBlock(nn.Module):
def __init__(self, in_channels, out_channels, **kwargs):
super().__init__()
self.conv = nn.Conv2d(in_channels, out_channels, bias=False, **kwargs)
self.batchnorm = nn.BatchNorm2d(out_channels) # Batchnorm is not there in original paper
self.leaky_relu = nn.LeakyReLU(0.01)
def forward(self, x):
return self.leaky_relu(self.batchnorm(self.conv(x)))
class Yolov1(nn.Module):
def __init__(self, in_channels=3, **kwargs):
super().__init__()
self.architecture = architecture_config
self.in_channels = 3
self.darknet = self._create_conv_layers(self.architecture)
self.fcs = self._create_fcs(**kwargs)
def forward(self, x):
x = self.darknet(x)
return self.fcs(torch.flatten(x, start_dim=1))
def _create_conv_layers(self, architecture):
layers = []
in_channels = self.in_channels
for x in architecture:
if type(x) == tuple:
layers += [
CNNBlock(in_channels, x[1], kernel_size=x[0], stride=x[2], padding=x[3])
]
in_channels = x[1]
elif type(x) == str:
layers += [
nn.MaxPool2d(kernel_size=(2,2), stride=(2,2))
]
elif type(x) == list:
conv1 = x[0]
conv2 = x[1]
num_repeats = x[2]
for i in range(num_repeats):
layers += [
CNNBlock(in_channels=in_channels, out_channels=conv1[1],
kernel_size=conv1[0], stride=conv1[2], padding=conv1[3]),
]
layers += [
CNNBlock(in_channels=conv1[1], out_channels=conv2[1],
kernel_size=conv2[0], stride=conv2[2], padding=conv2[3])
]
in_channels = conv2[1]
return nn.Sequential(*layers)
def _create_fcs(self, split_size, num_boxes, num_classes):
S, B, C = split_size, num_boxes, num_classes
return nn.Sequential(
nn.Flatten(),
nn.Linear(S*S*1024, 4096),
nn.LeakyReLU(0.01),
nn.Linear(4096, S * S * (C + B * 5)),
)
def test_model(S=7, B=2, C=20):
model = Yolov1(split_size=S, num_boxes=B, num_classes=C)
x = torch.randn((2, 3, 448, 448))
print(model(x).shape)
# test_model()