-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathConvNeXtB.py
35 lines (30 loc) · 1.04 KB
/
ConvNeXtB.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
_base_ = [
'../_base_/models/convnext/convnext-base.py',
'../_base_/datasets/imagenet_bs64_swin_224.py',
'../_base_/schedules/imagenet_bs1024_adamw_swin.py',
'../_base_/default_runtime.py',
]
# model settings
load_from = 'https://download.openmmlab.com/mmclassification/v0/convnext/convnext-base_3rdparty_32xb128_in1k_20220124-d0915162.pth'
# data settings
data_root = 'data/DiT-Syn'
model=dict(backbone=dict(type='ConvNeXt', arch='base', drop_path_rate=0.5))
train_dataloader = dict(
batch_size=128,
dataset=dict(
type='ImageNet',
data_root=data_root,
ann_file='', # We assume you are using the sub-folder format without ann_file
data_prefix='',
))
val_dataloader = dict(
batch_size=128,
dataset=dict(
type='ImageNet',
data_root=data_root,
ann_file='', # We assume you are using the sub-folder format without ann_file
data_prefix='',
))
test_dataloader = val_dataloader
# schedule settings
optim_wrapper = dict(clip_grad=dict(max_norm=5.0))