-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathnulltxtinv_wrapper.py
450 lines (391 loc) · 18.8 KB
/
nulltxtinv_wrapper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
import numpy as np
import torch
import PIL.Image
from tqdm import tqdm
from typing import Optional, Union, List
import warnings
warnings.filterwarnings('ignore')
from torch.optim.adam import Adam
import torch.nn.functional as nnf
from diffusers import DDIMScheduler
##########
# helper #
##########
def diffusion_step(model, latents, context, t, guidance_scale, low_resource=False):
if low_resource:
noise_pred_uncond = model.unet(latents, t, encoder_hidden_states=context[0])["sample"]
noise_prediction_text = model.unet(latents, t, encoder_hidden_states=context[1])["sample"]
else:
latents_input = torch.cat([latents] * 2)
noise_pred = model.unet(latents_input, t, encoder_hidden_states=context)["sample"]
noise_pred_uncond, noise_prediction_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_prediction_text - noise_pred_uncond)
latents = model.scheduler.step(noise_pred, t, latents)["prev_sample"]
return latents
def image2latent(vae, image):
with torch.no_grad():
if isinstance(image, PIL.Image.Image):
image = np.array(image)
if isinstance(image, np.ndarray):
dtype = next(vae.parameters()).dtype
device = next(vae.parameters()).device
image = torch.from_numpy(image).float() / 127.5 - 1
image = image.permute(2, 0, 1).unsqueeze(0).to(device=device, dtype=dtype)
latents = vae.encode(image)['latent_dist'].mean
latents = latents * 0.18215
return latents
def latent2image(vae, latents, return_type='np'):
assert isinstance(latents, torch.Tensor)
latents = 1 / 0.18215 * latents.detach()
image = vae.decode(latents)['sample']
if return_type in ['np', 'pil']:
image = (image / 2 + 0.5).clamp(0, 1)
image = image.cpu().permute(0, 2, 3, 1).numpy()
image = (image * 255).astype(np.uint8)
if return_type == 'pil':
pilim = [PIL.Image.fromarray(imi) for imi in image]
pilim = pilim[0] if len(pilim)==1 else pilim
return pilim
else:
return image
def init_latent(latent, model, height, width, generator, batch_size):
if latent is None:
latent = torch.randn(
(1, model.unet.in_channels, height // 8, width // 8),
generator=generator,
)
latents = latent.expand(batch_size, model.unet.in_channels, height // 8, width // 8).to(model.device)
return latent, latents
def txt_to_emb(model, prompt):
text_input = model.tokenizer(
prompt,
padding="max_length",
max_length=model.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",)
text_embeddings = model.text_encoder(text_input.input_ids.to(model.device))[0]
return text_embeddings
@torch.no_grad()
def text2image_ldm(
model,
prompt: List[str],
num_inference_steps: int = 50,
guidance_scale: Optional[float] = 7.5,
generator: Optional[torch.Generator] = None,
latent: Optional[torch.FloatTensor] = None,
uncond_embeddings=None,
start_time=50,
return_type='pil', ):
batch_size = len(prompt)
height = width = 512
if latent is not None:
height = latent.shape[-2] * 8
width = latent.shape[-1] * 8
text_input = model.tokenizer(
prompt,
padding="max_length",
max_length=model.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",)
text_embeddings = model.text_encoder(text_input.input_ids.to(model.device))[0]
max_length = text_input.input_ids.shape[-1]
if uncond_embeddings is None:
uncond_input = model.tokenizer(
[""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt",)
uncond_embeddings_ = model.text_encoder(uncond_input.input_ids.to(model.device))[0]
else:
uncond_embeddings_ = None
latent, latents = init_latent(latent, model, height, width, generator, batch_size)
model.scheduler.set_timesteps(num_inference_steps)
for i, t in enumerate(tqdm(model.scheduler.timesteps[-start_time:])):
if uncond_embeddings_ is None:
context = torch.cat([uncond_embeddings[i].expand(*text_embeddings.shape), text_embeddings])
else:
context = torch.cat([uncond_embeddings_, text_embeddings])
latents = diffusion_step(model, latents, context, t, guidance_scale, low_resource=False)
if return_type in ['pil', 'np']:
image = latent2image(model.vae, latents, return_type=return_type)
else:
image = latents
return image, latent
@torch.no_grad()
def text2image_ldm_imedit(
model,
thresh,
prompt: List[str],
target_prompt: List[str],
num_inference_steps: int = 50,
guidance_scale: Optional[float] = 7.5,
generator: Optional[torch.Generator] = None,
latent: Optional[torch.FloatTensor] = None,
uncond_embeddings=None,
start_time=50,
return_type='pil'
):
batch_size = len(prompt)
height = width = 512
text_input = model.tokenizer(
prompt,
padding="max_length",
max_length=model.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
target_text_input = model.tokenizer(
target_prompt,
padding="max_length",
max_length=model.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_embeddings = model.text_encoder(text_input.input_ids.to(model.device))[0]
target_text_embeddings = model.text_encoder(target_text_input.input_ids.to(model.device))[0]
max_length = text_input.input_ids.shape[-1]
if uncond_embeddings is None:
uncond_input = model.tokenizer(
[""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt"
)
uncond_embeddings_ = model.text_encoder(uncond_input.input_ids.to(model.device))[0]
else:
uncond_embeddings_ = None
latent, latents = init_latent(latent, model, height, width, generator, batch_size)
model.scheduler.set_timesteps(num_inference_steps)
for i, t in enumerate(tqdm(model.scheduler.timesteps[-start_time:])):
if i < (1 - thresh) * num_inference_steps:
if uncond_embeddings_ is None:
context = torch.cat([uncond_embeddings[i].expand(*text_embeddings.shape), text_embeddings])
else:
context = torch.cat([uncond_embeddings_, text_embeddings])
latents = diffusion_step(model, latents, context, t, guidance_scale, low_resource=False)
else:
if uncond_embeddings_ is None:
context = torch.cat([uncond_embeddings[i].expand(*target_text_embeddings.shape), target_text_embeddings])
else:
context = torch.cat([uncond_embeddings_, target_text_embeddings])
latents = diffusion_step(model, latents, context, t, guidance_scale, low_resource=False)
if return_type in ['pil', 'np']:
image = latent2image(model.vae, latents, return_type=return_type)
else:
image = latents
return image, latent
###########
# wrapper #
###########
class NullInversion(object):
def __init__(self, model, num_ddim_steps, guidance_scale, device='cuda'):
self.model = model
self.device = device
self.num_ddim_steps=num_ddim_steps
self.guidance_scale = guidance_scale
self.tokenizer = self.model.tokenizer
self.prompt = None
self.context = None
def prev_step(self, model_output: Union[torch.FloatTensor, np.ndarray], timestep: int, sample: Union[torch.FloatTensor, np.ndarray]):
prev_timestep = timestep - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps
alpha_prod_t = self.scheduler.alphas_cumprod[timestep]
alpha_prod_t_prev = self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod
beta_prod_t = 1 - alpha_prod_t
pred_original_sample = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
pred_sample_direction = (1 - alpha_prod_t_prev) ** 0.5 * model_output
prev_sample = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction
return prev_sample
def next_step(self, noise_pred, timestep, sample):
timestep, next_timestep = min(timestep - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps, 999), timestep
alpha_prod_t = self.scheduler.alphas_cumprod[timestep] if timestep >= 0 else self.scheduler.final_alpha_cumprod
alpha_prod_t_next = self.scheduler.alphas_cumprod[next_timestep]
beta_prod_t = 1 - alpha_prod_t
next_original_sample = (sample - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5
next_sample_direction = (1 - alpha_prod_t_next) ** 0.5 * noise_pred
next_sample = alpha_prod_t_next ** 0.5 * next_original_sample + next_sample_direction
return next_sample
def get_noise_pred_single(self, latents, t, context):
noise_pred = self.model.unet(latents, t, encoder_hidden_states=context)["sample"]
return noise_pred
def get_noise_pred(self, latents, t, is_forward=True, context=None):
latents_input = torch.cat([latents] * 2)
if context is None:
context = self.context
guidance_scale = 1 if is_forward else self.guidance_scale
noise_pred = self.model.unet(latents_input, t, encoder_hidden_states=context)["sample"]
noise_pred_uncond, noise_prediction_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_prediction_text - noise_pred_uncond)
if is_forward:
latents = self.next_step(noise_pred, t, latents)
else:
latents = self.prev_step(noise_pred, t, latents)
return latents
@torch.no_grad()
def init_prompt(self, prompt: str):
uncond_input = self.model.tokenizer(
[""], padding="max_length", max_length=self.model.tokenizer.model_max_length,
return_tensors="pt"
)
uncond_embeddings = self.model.text_encoder(uncond_input.input_ids.to(self.model.device))[0]
text_input = self.model.tokenizer(
[prompt],
padding="max_length",
max_length=self.model.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_embeddings = self.model.text_encoder(text_input.input_ids.to(self.model.device))[0]
self.context = torch.cat([uncond_embeddings, text_embeddings])
self.prompt = prompt
@torch.no_grad()
def ddim_loop(self, latent, emb):
# uncond_embeddings, cond_embeddings = self.context.chunk(2)
all_latent = [latent]
latent = latent.clone().detach()
for i in range(self.num_ddim_steps):
t = self.model.scheduler.timesteps[len(self.model.scheduler.timesteps) - i - 1]
noise_pred = self.get_noise_pred_single(latent, t, emb)
latent = self.next_step(noise_pred, t, latent)
all_latent.append(latent)
return all_latent
@property
def scheduler(self):
return self.model.scheduler
@torch.no_grad()
def ddim_invert(self, image, prompt):
assert isinstance(image, PIL.Image.Image)
scheduler_save = self.model.scheduler
self.model.scheduler = DDIMScheduler.from_config(self.model.scheduler.config)
self.model.scheduler.set_timesteps(self.num_ddim_steps)
with torch.no_grad():
emb = txt_to_emb(self.model, prompt)
latent = image2latent(self.model.vae, image)
ddim_latents = self.ddim_loop(latent, emb)
self.model.scheduler = scheduler_save
return ddim_latents[-1]
def null_optimization(self, latents, emb, nemb=None, num_inner_steps=10, epsilon=1e-5):
# force fp32
dtype = latents[0].dtype
uncond_embeddings = nemb.float() if nemb is not None else txt_to_emb(self.model, "").float()
cond_embeddings = emb.float()
latents = [li.float() for li in latents]
self.model.unet.to(torch.float32)
uncond_embeddings_list = []
latent_cur = latents[-1]
bar = tqdm(total=num_inner_steps * self.num_ddim_steps)
for i in range(self.num_ddim_steps):
uncond_embeddings = uncond_embeddings.clone().detach()
uncond_embeddings.requires_grad = True
optimizer = Adam([uncond_embeddings], lr=1e-2 * (1. - i / 100.))
latent_prev = latents[len(latents) - i - 2]
t = self.model.scheduler.timesteps[i]
with torch.no_grad():
noise_pred_cond = self.get_noise_pred_single(latent_cur, t, cond_embeddings)
for j in range(num_inner_steps):
noise_pred_uncond = self.get_noise_pred_single(latent_cur, t, uncond_embeddings)
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_cond - noise_pred_uncond)
latents_prev_rec = self.prev_step(noise_pred, t, latent_cur)
loss = nnf.mse_loss(latents_prev_rec, latent_prev)
optimizer.zero_grad()
loss.backward()
optimizer.step()
loss_item = loss.item()
bar.update()
if loss_item < epsilon + i * 2e-5:
break
for j in range(j + 1, num_inner_steps):
bar.update()
uncond_embeddings_list.append(uncond_embeddings[:1].detach())
with torch.no_grad():
context = torch.cat([uncond_embeddings, cond_embeddings])
latent_cur = self.get_noise_pred(latent_cur, t, False, context)
bar.close()
uncond_embeddings_list = [ui.to(dtype) for ui in uncond_embeddings_list]
self.model.unet.to(dtype)
return uncond_embeddings_list
def null_invert(self, im, txt, ntxt=None, num_inner_steps=10, early_stop_epsilon=1e-5):
assert isinstance(im, PIL.Image.Image)
scheduler_save = self.model.scheduler
self.model.scheduler = DDIMScheduler.from_config(self.model.scheduler.config)
self.model.scheduler.set_timesteps(self.num_ddim_steps)
with torch.no_grad():
nemb = txt_to_emb(self.model, ntxt) \
if ntxt is not None else txt_to_emb(self.model, "")
emb = txt_to_emb(self.model, txt)
latent = image2latent(self.model.vae, im)
# ddim inversion
ddim_latents = self.ddim_loop(latent, emb)
# nulltext inversion
uncond_embeddings = self.null_optimization(
ddim_latents, emb, nemb, num_inner_steps, early_stop_epsilon)
self.model.scheduler = scheduler_save
return ddim_latents[-1], uncond_embeddings
def null_optimization_dual(
self, latents0, latents1, emb0, emb1, nemb=None,
num_inner_steps=10, epsilon=1e-5):
# force fp32
dtype = latents0[0].dtype
uncond_embeddings = nemb.float() if nemb is not None else txt_to_emb(self.model, "").float()
cond_embeddings0, cond_embeddings1 = emb0.float(), emb1.float()
latents0 = [li.float() for li in latents0]
latents1 = [li.float() for li in latents1]
self.model.unet.to(torch.float32)
uncond_embeddings_list = []
latent_cur0 = latents0[-1]
latent_cur1 = latents1[-1]
bar = tqdm(total=num_inner_steps * self.num_ddim_steps)
for i in range(self.num_ddim_steps):
uncond_embeddings = uncond_embeddings.clone().detach()
uncond_embeddings.requires_grad = True
optimizer = Adam([uncond_embeddings], lr=1e-2 * (1. - i / 100.))
latent_prev0 = latents0[len(latents0) - i - 2]
latent_prev1 = latents1[len(latents1) - i - 2]
t = self.model.scheduler.timesteps[i]
with torch.no_grad():
noise_pred_cond0 = self.get_noise_pred_single(latent_cur0, t, cond_embeddings0)
noise_pred_cond1 = self.get_noise_pred_single(latent_cur1, t, cond_embeddings1)
for j in range(num_inner_steps):
noise_pred_uncond0 = self.get_noise_pred_single(latent_cur0, t, uncond_embeddings)
noise_pred_uncond1 = self.get_noise_pred_single(latent_cur1, t, uncond_embeddings)
noise_pred0 = noise_pred_uncond0 + self.guidance_scale*(noise_pred_cond0-noise_pred_uncond0)
noise_pred1 = noise_pred_uncond1 + self.guidance_scale*(noise_pred_cond1-noise_pred_uncond1)
latents_prev_rec0 = self.prev_step(noise_pred0, t, latent_cur0)
latents_prev_rec1 = self.prev_step(noise_pred1, t, latent_cur1)
loss = nnf.mse_loss(latents_prev_rec0, latent_prev0) + \
nnf.mse_loss(latents_prev_rec1, latent_prev1)
optimizer.zero_grad()
loss.backward()
optimizer.step()
loss_item = loss.item()
bar.update()
if loss_item < epsilon + i * 2e-5:
break
for j in range(j + 1, num_inner_steps):
bar.update()
uncond_embeddings_list.append(uncond_embeddings[:1].detach())
with torch.no_grad():
context0 = torch.cat([uncond_embeddings, cond_embeddings0])
context1 = torch.cat([uncond_embeddings, cond_embeddings1])
latent_cur0 = self.get_noise_pred(latent_cur0, t, False, context0)
latent_cur1 = self.get_noise_pred(latent_cur1, t, False, context1)
bar.close()
uncond_embeddings_list = [ui.to(dtype) for ui in uncond_embeddings_list]
self.model.unet.to(dtype)
return uncond_embeddings_list
def null_invert_dual(
self, im0, im1, txt0, txt1, ntxt=None,
num_inner_steps=10, early_stop_epsilon=1e-5, ):
assert isinstance(im0, PIL.Image.Image)
assert isinstance(im1, PIL.Image.Image)
scheduler_save = self.model.scheduler
self.model.scheduler = DDIMScheduler.from_config(self.model.scheduler.config)
self.model.scheduler.set_timesteps(self.num_ddim_steps)
with torch.no_grad():
nemb = txt_to_emb(self.model, ntxt) \
if ntxt is not None else txt_to_emb(self.model, "")
latent0 = image2latent(self.model.vae, im0)
latent1 = image2latent(self.model.vae, im1)
emb0 = txt_to_emb(self.model, txt0)
emb1 = txt_to_emb(self.model, txt1)
# ddim inversion
ddim_latents_0 = self.ddim_loop(latent0, emb0)
ddim_latents_1 = self.ddim_loop(latent1, emb1)
# nulltext inversion
nembs = self.null_optimization_dual(
ddim_latents_0, ddim_latents_1, emb0, emb1, nemb, num_inner_steps, early_stop_epsilon)
self.model.scheduler = scheduler_save
return ddim_latents_0[-1], ddim_latents_1[-1], nembs