-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmake_trainingset.m
78 lines (65 loc) · 2.07 KB
/
make_trainingset.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
% Description: Implementation to make training data
%
% Copyright @ Jieun Lee
% Laboratory for Imaging Science and Technology
% Seoul National University
% email: [email protected]
%
%% Normalize the data for training
% Healthy controls
% curve: the multi-echo GRASE data
% d: T2 distribution processed by fitting with stimulated echo correction
for i=1:6
eval([ 'skcur' num2str(i) '=normalize_data(curve' num2str(i) ');' ...
'skdis' num2str(i) '=normalize_data(d' num2str(i) ');' ])
end
% MS patients
% mscur: the multi-echo GRASE data
% msd: T2 distribution processed by fitting with stimulated echo correction
for i=1:6
eval([ 'skmscur' num2str(i) '=normalize_data(mscur' num2str(i) ');' ...
'skmsdis' num2str(i) '=normalize_data(msd' num2str(i) ');' ])
end
%% Select data
% TE = 10 ms
% Training data, 6 HC and 6 MS
CURVE = cat(2,skcur1,skcur2,skcur3,skcur4,skcur5,skcur6,skmscur1,skmscur2,skmscur3,skmscur4,skmscur5,skmscur6);
DIST = cat(2,skdis1,skdis2,skdis3,skdis4,skdis5,skdis6,skmsdis1,skmsdis2,skmsdis3,skmsdis4,skmsdis5,skmsdis6);
% Validation data, 1 HC and 1 MS
valcur = cat(2,skcur7,skmscur8);
valdis = cat(2,skdis7,skmsdis8);
%% Make data
% training data
[ncur,ndata] = size(CURVE);
[ndis,ndata] = size(DIST);
in_sum = sum(CURVE,1);
nozero = nnz(in_sum);
train = zeros(ncur,nozero);
target = zeros(ndis,nozero);
z = 0;
% Exclude the data with no information
for i=1:ndata
if in_sum(1,i)~=0
z = z+1;
train(:,z) = CURVE(:,i);
target(:,z) = DIST(:,i);
end
end
% validation data
[ncur,ndata] = size(valcur);
[ndis,ndata] = size(valdis);
in_sum = sum(valcur,1);
nozero = nnz(in_sum);
val = zeros(ncur,nozero);
val_target = zeros(ndis,nozero);
z = 0;
for i=1:ndata
if in_sum(1,i)~=0
z = z+1;
val(:,z) = valcur(:,i);
val_target(:,z) = valdis(:,i);
end
end
train(isnan(train))=0; target(isnan(target))=0;
val(isnan(val))=0; val_target(isnan(val_target))=0;
save('processed_train.mat','-v7.3','train','target','val','val_target')