-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot_star_sed.py
80 lines (69 loc) · 2.28 KB
/
plot_star_sed.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import argparse
import matplotlib.pyplot as plt
import numpy as np
from astropy.table import QTable
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("name", help="name of star")
parser.add_argument("--png", help="save figure as a png file", action="store_true")
parser.add_argument("--pdf", help="save figure as a pdf file", action="store_true")
args = parser.parse_args()
eefraction = 0.8
extstr = "_bkgsub"
dir = "SolarAnalogs"
# make plot
fontsize = 14
font = {"size": fontsize}
plt.rc("font", **font)
plt.rc("lines", linewidth=2)
plt.rc("axes", linewidth=2)
plt.rc("xtick.major", width=2)
plt.rc("ytick.major", width=2)
fig, ax = plt.subplots(nrows=1, ncols=1, figsize=(14, 8))
# read in the calfactors for each filter
waves = np.array([5.6, 7.7, 10.0, 11.3, 12.8, 15.0, 18.0, 21.0, 25.5])
filters = [
"F560W",
"F770W",
"F1000W",
"F1130W",
"F1280W",
"F1500W",
"F1800W",
"F2100W",
"F2550W",
]
atab = None
flux = []
flux_unc = []
ofilters = []
for cfilter in filters:
ctab = QTable.read(
f"CalFacs/miri_calfactors{extstr}_{cfilter}_ave.dat",
format="ascii.commented_header",
)
obstab = QTable.read(f"{dir}/{cfilter}{extstr}_eefrac{eefraction}_phot.fits")
(mindx,) = np.where(obstab["name"] == args.name)
if len(mindx) > 0:
ofilters.append(cfilter)
apcor = obstab["apcorr"][mindx[0]]
pixarea = obstab["pixarea"][mindx[0]]
tcfac = ctab[f"avecalfac_{cfilter}"] * apcor * pixarea * 1e6
flux.append(obstab["aperture_sum_bkgsub"][mindx[0]] * tcfac)
flux_unc.append(obstab["aperture_sum_bkgsub_err"][mindx[0]] * tcfac)
outtab = QTable()
outtab["filter"] = ofilters
outtab["flux"] = flux
outtab["unc"] = flux_unc
print(outtab)
ax.set_xlabel(r"$\lambda$ [$\mu$m]")
ax.set_ylabel("calfac / (median calfac)")
ax.legend(fontsize=0.8 * fontsize, ncol=2)
plt.tight_layout()
fname = "Figs/miri_calfactors_allwaves"
if args.png:
fig.savefig(f"{fname}.png")
elif args.pdf:
fig.savefig(f"{fname}.pdf")
else:
plt.show()