-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnumberrec.py
53 lines (41 loc) · 1.59 KB
/
numberrec.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import tensorflow as tf
from tensorflow import keras
import numpy as np
import matplotlib.pyplot as plt
data = keras.datasets.mnist
(train_images, train_labels), (test_images, test_labels) = data.load_data()
#print(train_labels[0])
#print(train_images[0])
#plt.imshow(train_images[0], cmap=plt.cm.binary)
#plt.show()
train_images = train_images/255.0
test_images = test_images/255.0
model = keras.Sequential([
keras.layers.Flatten(input_shape=(28,28)),
keras.layers.Dense(128, activation="relu"),
keras.layers.Dense(10, activation="softmax")
])
model.compile(optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"])
model.fit(train_images, train_labels,epochs=3)
test_loss, test_acc = model.evaluate(test_images, test_labels)
print("Tested Acc: ",test_acc)import tensorflow as tf
from tensorflow import keras
import numpy as np
import matplotlib.pyplot as plt
data = keras.datasets.mnist
(train_images, train_labels), (test_images, test_labels) = data.load_data()
#print(train_labels[0])
#print(train_images[0])
#plt.imshow(train_images[0], cmap=plt.cm.binary)
#plt.show()
train_images = train_images/255.0
test_images = test_images/255.0
model = keras.Sequential([
keras.layers.Flatten(input_shape=(28,28)),
keras.layers.Dense(128, activation="relu"),
keras.layers.Dense(10, activation="softmax")
])
model.compile(optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"])
model.fit(train_images, train_labels,epochs=3)
test_loss, test_acc = model.evaluate(test_images, test_labels)
print("Tested Acc: ",test_acc)