-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathapp.py
71 lines (56 loc) · 2.02 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
from flask import Flask, render_template, request
import numpy as np
import os
import tensorflow as tf
import matplotlib.pyplot as plt
from keras.preprocessing.image import load_img
import keras.preprocessing.image as image
from tensorflow.keras.models import load_model
from tensorflow.keras.applications.densenet import preprocess_input
from werkzeug.utils import secure_filename
#load model
model =load_model("model/DenseNet121.h5")
print('************Model loaded*************')
def predict_disease(image_path,model):
test_image = image.load_img(image_path,target_size = (256,256))
plt.imshow(plt.imread(image_path))
test_image = image.img_to_array(test_image)
test_image = test_image/255
test_image = np.expand_dims(test_image, axis = 0)
result = model.predict(test_image)
result = result.ravel()
classes = ["Fusarium Wilt","Leaf Curl Disease","Healthy Leaf","Healthy Plant"]
max = result[0];
index = 0;
#Loop through the array
for i in range(0, len(result)):
#Compare elements of array with max
if(result[i] > max):
max = result[i];
index = i
#print("Largest element present in given array: " + str(max) +" And it belongs to " +str(classes[index]) +" class.");
pred = str(classes[index])
return pred
# Create flask instance
app = Flask(__name__)
@app.route('/', methods=['GET'])
def index():
# Main page
return render_template('index.html')
@app.route('/predict', methods=['GET', 'POST'])
def upload():
if request.method == 'POST':
# Get the file from post request
f = request.files['file']
# Save the file to ./uploads
basepath = os.path.dirname(__file__)
file_path = os.path.join(
basepath, 'uploads', secure_filename(f.filename))
f.save(file_path)
# Make prediction
preds = predict_disease(file_path, model)
result = preds
return result
return None
if __name__ == '__main__':
app.run(host="0.0.0.0", port=80)