-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
executable file
·141 lines (117 loc) · 5.7 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import sys
import gym
import numpy as np
import torch
import argparse
import os
import utils
import algos
from logger import logger, setup_logger
import d4rl
import torch.nn as nn
import time
from data_utils import d4rl_trajectories
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def evaluate_policy(policy, mean, std, eval_episodes=10):
all_returns = []
for _ in range(eval_episodes):
obs = env.reset()
done = False
episodic_len = 0
episodic_reward = 0
while not done:
obs = (np.array(obs).reshape(1, -1) - mean) / std
action = policy.select_action(obs)
obs, rew, done, info = env.step(action)
episodic_reward += rew
episodic_len += 1
if episodic_len+1 == env._max_episode_steps:
done = True
all_returns.append(episodic_reward)
all_returns = np.array(all_returns)
avg_return = np.mean(all_returns)
std_return = np.std(all_returns)
median_return = np.median(all_returns)
min_return = np.min(all_returns)
d4rl_score = env.get_normalized_score(avg_return)
print ("---------------------------------------")
print ("Evaluation over %d episodes: %f | normalized score :%f " % (eval_episodes, avg_return, d4rl_score))
print ("---------------------------------------")
return avg_return, std_return, median_return, min_return, d4rl_score
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--env_name", default="hopper-expert-v2") # OpenAI gym environment name
parser.add_argument("--seed", default=0, type=int) # Sets Gym, PyTorch and Numpy seeds
parser.add_argument("--eval_freq", default=5e3, type=float) # How often (time steps) we evaluate
parser.add_argument("--max_timesteps", default=1e6, type=float) # Max time steps to run environment for
parser.add_argument("--version", default='0', type=str)
parser.add_argument('--algo_name', default="TD3_BC", type=str) # Which algo to run (see the options below in the main function)
parser.add_argument('--log_dir', default='./data_tmp/', type=str) # Logging directory
parser.add_argument('--gamma', default=0.99, type=float)
parser.add_argument('--batch_size', default=256, type=int)
parser.add_argument('--hidden_dim', default=256, type=int)
parser.add_argument('--buffer_size', default=1000000, type=int)
args = parser.parse_args()
init_time = time.time()
torch.manual_seed(args.seed)
np.random.seed(args.seed)
env = gym.make(args.env_name)
env.seed(args.seed)
state_dim = env.observation_space.shape[0]
action_dim = env.action_space.shape[0]
max_action = float(env.action_space.high[0])
print(f'State dim :{state_dim}, Action dim: {action_dim}')
print('Max action: ', max_action)
# Load buffer
replay_buffer = utils.ReplayBuffer()
dataset = env.unwrapped.get_dataset()
num_trajectories = int(args.buffer_size / env._max_episode_steps)
d4rl_trajectories(dataset, env, replay_buffer, buffer_size=args.buffer_size)
mean, std = replay_buffer.normalize_states()
hparam_str_dict = dict(algo=args.algo_name, seed=args.seed, env=args.env_name,
batch_size=args.batch_size, buffer_size=args.buffer_size)
variant = hparam_str_dict
file_name = ','.join(['%s=%s' % (k, str(hparam_str_dict[k])) for k in sorted(hparam_str_dict.keys())])
print ("---------------------------------------")
print ("Settings: " + file_name)
print ("---------------------------------------")
setup_logger(file_name, variant=variant, log_dir=os.path.join(args.log_dir, file_name))
if args.algo_name == 'BCQ':
policy = algos.BCQ(state_dim=state_dim,
action_dim=action_dim,
max_action=max_action,
discount=args.gamma)
elif args.algo_name == 'IQL':
policy = algos.IQL(state_dim=state_dim,
action_dim=action_dim,
max_action=max_action,
hidden_dim=args.hidden_dim,
discount=args.gamma)
elif args.algo_name == 'BCQ-v2':
policy = algos.BCQ(state_dim=state_dim,
action_dim=action_dim,
max_action=max_action,
cloning=True,
discount=args.gamma)
elif args.algo_name == 'TD3_BC':
policy = algos.TD3_BC(state_dim=state_dim,
action_dim=action_dim,
max_action=max_action,
hidden_dim=args.hidden_dim,
discount=args.gamma)
else:
sys.exit(f'Choose the right algo name, {args.algo_name} not found')
training_iters = 0
while training_iters < args.max_timesteps:
pol_vals = policy.train(replay_buffer, iterations=int(args.eval_freq), batch_size=args.batch_size)
avg_return, std_return, median_return, min_return, d4rl_score = evaluate_policy(policy, mean, std)
training_iters += args.eval_freq
print("Training iterations: " + str(training_iters))
logger.record_tabular('Training Epochs', int(training_iters // int(args.eval_freq)))
logger.record_tabular('Eval/AverageReturn', avg_return)
logger.record_tabular('Eval/StdReturn', std_return)
logger.record_tabular('Eval/MedianReturn', median_return)
logger.record_tabular('Eval/MinReturn', min_return)
logger.record_tabular('Eval/D4RL_score', d4rl_score)
logger.record_tabular('training time', (time.time() - init_time) / (60 * 60))
logger.dump_tabular()