-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_protonet.py
284 lines (242 loc) · 11.9 KB
/
train_protonet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
################################################################################
# Copyright (c) 2024 Samsung Electronics Co., Ltd.
#
# Author(s):
# Francesco Barbato ([email protected]; [email protected])
# Umberto Michieli ([email protected])
# Jijoong Moon ([email protected])
# Pietro Zanuttigh ([email protected])
# Mete Ozay ([email protected])
#
# Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) License, (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at https://creativecommons.org/licenses/by-nc-sa/4.0
# Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and limitations under the License.
# For conditions of distribution and use, see the accompanying LICENSE.md file.
################################################################################
import argparse
import warnings
import time
from copy import deepcopy
import torch
import numpy as np
from tqdm import trange
import matplotlib
from matplotlib import pyplot as plt
from matplotlib.patches import Rectangle
from utils import Metrics, clean_predictions, get_model_and_protonet, get_train_val_loaders
warnings.simplefilter(action='ignore', category=FutureWarning)
warnings.simplefilter(action='ignore', category=UserWarning)
warnings.simplefilter(action='ignore', category=ZeroDivisionError)
def str2bool(s):
"""
string to bool
"""
s = s.lower()
if s in ['1', 't', 'true']:
return True
if s in ['0', 'f', 'false']:
return False
raise ValueError(f"[{s}] cannot be parsed as boolean")
def train_protonet(tloader, args, model, proto):
"""
train protonet
"""
for sample in tloader:
x = sample['img'] / 255.
x = x.to(args.device, dtype=torch.float32)
if args.square_boxes:
for bid, box in enumerate(sample['bboxes']):
cx, cy, w, h = box
l = args.expand_rate*(w+h)/2
sample['bboxes'][bid] = torch.tensor([cx, cy, l, l])
if model.use_gt_boxes:
ssample = deepcopy(sample)
for i in range(ssample['cls'].shape[0]):
ssample['cls'][i] = int(
tloader.dataset.idmap[str(ssample['cls'][i].int().item())])
else:
ssample = None
vecs, _ = model(x, conf=.3, sample=ssample)
proto.train_protos(vecs, sample['cls'].int())
def plot_image_and_gt_box(x, sample, vloader):
"""
debug plots - image and gt box
"""
fig, ax = plt.subplots(1,1)
ax.imshow(x[0].cpu().permute(1,2,0))
gh, gw = x.shape[2:]
cx, cy, w, h = sample['bboxes'][0]
x0, y0 = gw*(cx-w/2).item(), gh*(cy-h/2).item()
x1 = gw*(cx+w/2).item()
ax.add_patch(Rectangle((x0, y0), w.item()*gw, h.item()*gh, fill=False, color='g'))
ax.text(x1, y0, vloader.dataset.names[str(sample['cls'][0].int().item())],
verticalalignment='top', horizontalalignment='right',
bbox={'facecolor': 'g', 'edgecolor': 'g', 'pad': 0})
return fig, ax
def plot_predictions(box, ax, vloader):
"""
debug plots - predicted boxes
"""
for x0, y0, x1, y1, conf, cls in box.cpu():
if conf > .01:
ax.add_patch(Rectangle((x0, y0), x1-x0, y1-y0, fill=False, color='r'))
if cls.int().item() > 0:
ax.text(x0, y0, vloader.dataset.names[str(cls.int().item())],
verticalalignment='top', horizontalalignment='left',
bbox={'facecolor': 'r', 'edgecolor': 'r', 'pad': 0})
else:
ax.text(x0, y0, 'None',
verticalalignment='top', horizontalalignment='left',
bbox={'facecolor': 'r', 'edgecolor': 'r', 'pad': 0})
def eval_protonet(vloader, args, model, proto, metrics):
"""
evaluate protonet
"""
acc = 0
cts = 0
for sid, sample in enumerate(vloader):
x = sample['img'] / 255.
x = x.to(args.device, dtype=torch.float32)
if args.square_boxes:
for bid, box in enumerate(sample['bboxes']):
cx, cy, w, h = box
l = args.expand_rate*(w+h)/2
sample['bboxes'][bid] = torch.tensor([cx, cy, l, l])
vecs, preds = model(x, conf=0.001)
preds = proto(vecs, preds)
if args.debug or args.save_images:
fig, ax = plot_image_and_gt_box(x, sample, vloader)
for i, box in enumerate(preds):
if args.debug or args.save_images:
plot_predictions(box, ax, vloader)
# this also removes boxes that didn't get their label changed
box, labels, cls = clean_predictions(box, sample, i)
metrics(box, labels, cls)
acc += any(torch.any(box[:,-1].cpu() == cl) for cl in cls)
cts += 1
if args.debug:
plt.show()
if args.save_images:
fig.tight_layout()
fig.savefig('images_dump/%04d.png'%sid)
plt.close()
return acc, cts
def run_episode(args, tloader, vloader, model, proto, verbose=False):
"""
run one episodic training and get the metrics
"""
max_vram = 0
if args.save_images:
matplotlib.use('webagg')
with torch.inference_mode():
metrics = Metrics(vloader.dataset.names, conf=0.001)
strain = time.time()
train_protonet(tloader, args, model, proto)
max_vram += torch.cuda.max_memory_reserved(args.device_id)/1024/1024
etrain = time.time()
acc, cts = eval_protonet(vloader, args, model, proto, metrics)
evalid = time.time()
max_vram += torch.cuda.max_memory_reserved(args.device_id)/1024/1024
map50, _, map50_95 = metrics.get_ap()
if verbose:
metrics.print_ap()
if args.use_map50:
return map50, 100*acc/cts, (etrain-strain)/len(tloader.dataset), \
(evalid-etrain)/len(vloader.dataset), max_vram/2
return map50_95, 100*acc/cts, (etrain-strain)/len(tloader.dataset), \
(evalid-etrain)/len(vloader.dataset), max_vram/2
if __name__ == '__main__':
parser = argparse.ArgumentParser()
# model-related arguments
parser.add_argument('--model', default='residual',
choices=['base', 'residual', 'dino', 'demo'],
help='Which model configuration to use')
parser.add_argument('--pnet', default='cond',
choices=['cond', 'base', 'simple'],
help="Which protonet configuration to use")
parser.add_argument('--pool_mode', default='mean',
choices=['mean', 'median', 'std', 'skew', 'max'],
help="Which pooling strategy to use")
parser.add_argument('--use_fcn', action='store_true',
help="Whether to use the 'fcn' configuration for AuXFT")
parser.add_argument('--mask_extra', action='store_true',
help="Whether to mask extra classes when computing protonet distribution")
parser.add_argument('--cat_chs', action='store_true',
help="Whether to use the 'cat' configuration for the baseline")
parser.add_argument('--coarse_disabled', type=str2bool, default=True,
help="Whether to consider or not the coarse classes in the protonet output")
parser.add_argument('--ckpt', default='ckpts/auxft.pth',
help="The checkpoint to be loaded, must match the configuration provided in --model")
parser.add_argument('--base_ckpt', default='ckpts/base.pth',
help="The checkpoint used when --model=base")
parser.add_argument('--use_map50', action='store_true',
help="Whether to measure mAP50 instead of mAP50-95")
# dataset-related arguments
parser.add_argument('--dataset', default='perseg',
choices=['mixed', 'pod', 'perseg', 'core50', 'icub'],
help="Which dataset to use for evaluation")
parser.add_argument('--support', default=1, type=int,
help="Size of the support set for each episode")
parser.add_argument('--val_mode', default=3, type=int,
help="Which validation set to use, only relevant for POD")
parser.add_argument('--episodic', type=str2bool, default=True,
help="Whether to run the evaluation in episodic mode")
parser.add_argument('--episodes', default=100, type=int,
help="Number of episodes")
# training arguments
parser.add_argument('--device', default='cuda', help="Pytorch device")
parser.add_argument('--device_id', default=0, type=int, help="Pytorch device id, relevant for multi-GPU machines")
parser.add_argument('--verbose', action='store_true', help="Print per-class AP")
parser.add_argument('--debug', action='store_true', help="Show predictions on matplotlib")
parser.add_argument('--save_images', action='store_true', help="Save predictions as images")
parser.add_argument('--square_boxes', action='store_true', help="Convert GT boxes to square, see Fig. 4 of the paper")
parser.add_argument('--expand_rate', type=float, default=1, help="Expansion rate for the GT boxes, see Fig. 4 of the paper")
g_args = parser.parse_args()
# set cuda device
if g_args.device == 'cuda':
g_args.device += ':%d'%g_args.device_id
print("*"*100)
print("*"+" "*29+"Running with the following configuration:"+" "*28+"*")
print("* % 30s: % 64s *"%('Argument', 'Value'))
print("*"*100)
for k, v in vars(g_args).items():
print("* % 30s: % 64s *"%(k,v))
print("*"*100, '\n\n')
g_args.coarse_labels = True
g_tloader, g_vloader = get_train_val_loaders(g_args)
g_model, g_proto = get_model_and_protonet(g_args, g_tloader.dataset)
gmap = []
gacc = []
gttime = []
gvtime = []
gvram = []
pbar = trange(g_args.episodes if g_args.episodic and not g_args.debug \
and not g_args.save_images else 1,
desc='Avg. mAP: %05.2f, Avg. Acc: %05.2f, Episode mAP: %05.2f, Episode Acc: %05.2f, Training Time: %06.4fs/im, Validation Time: %06.4fs/im, Max VRAM: %.2fMB'%(0,0,0,0,0,0,0), leave=False, ncols=200)
for ep in pbar:
if g_args.episodic:
g_tloader.dataset.init_episode(ep)
g_vloader.dataset.init_episode(ep)
g_proto.reset()
emAP, eacc, ettime, evtime, evram = run_episode(
g_args, g_tloader, g_vloader, g_model, g_proto,
verbose=g_args.verbose and not g_args.episodic)
gmap.append(emAP)
gacc.append(eacc)
gttime.append(ettime)
gvtime.append(evtime)
gvram.append(evram)
pbar.set_description('Avg. mAP: %05.2f, Avg. Acc: %05.2f, Episode mAP: %05.2f, Episode Acc: %05.2f, Training Time: %06.4fs/im, Validation Time: %06.4fs/im, Max VRAM: %.2fMB'%(np.mean(gmap), np.mean(gacc), emAP, eacc, ettime, evtime, evram))
print("-"*100)
print("Average mAP50-95: %.2f, Standard Deviation: %.2f"%(np.mean(gmap), np.std(gmap)))
print("Average Accuracy: %.2f, Standard Deviation: %.2f"%(np.mean(gacc), np.std(gacc)))
print("Average Training time: %.4fs/im, Standard Deviation: %.4f"%(
np.mean(gttime), np.std(gttime)))
print("Average Inference time: %.4fs/im, Standard Deviation: %.4f"%(
np.mean(gvtime), np.std(gvtime)))
print("Average Max Reserved VRAM: %fMB, Standard Deviation: %.2f"%(
np.mean(gvram), np.std(gvram)))
print("-"*100)