-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathpart2_splitting_shuffling_vectorizing.py
82 lines (64 loc) · 2.9 KB
/
part2_splitting_shuffling_vectorizing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import numpy as np
from sklearn.model_selection import train_test_split
import pandas as pd
from sklearn.feature_extraction.text import CountVectorizer
import re
from scipy import sparse
import os
from joblib import dump, load
def load_data(data_path):
alldata_df = pd.read_csv(data_path)
alldata_df.columns = ['Text', 'Job_Title']
all_X = alldata_df['Text']
all_y = alldata_df['Job_Title']
print("data is stored into X and y")
#remove label names from descriptions
all_X = all_X.str.replace('data sci[a-z]+', '', regex = True, case=False)
all_X = all_X.str.replace('data eng[a-z]+', '', regex = True, case=False)
all_X = all_X.str.replace('software eng[a-z]+', '', regex = True, case=False)
return(all_X, all_y)
def vectorize_training_data(X_train, X_test):
#Build a counter based on the training dataset
counter = CountVectorizer()
counter.fit(X_train)
#count the number of times each term appears in a document and transform each doc into a count vector
fitted_counter = dump(counter, "fitted_counter.joblib")
X_train_vec = counter.transform(X_train)#transform the training data
X_test_vec = counter.transform(X_test)#transform the testing data
return X_train_vec, X_test_vec
def vectorize_labels(y_train, y_test):
y_train_vec = []
for row in y_train:
if row == "data engineer":
y_train_vec.append(0)
elif row == "data scientist":
y_train_vec.append(1)
elif row == "software engineer":
y_train_vec.append(2)
y_test_vec = []
for row in y_test:
if row == "data engineer":
y_test_vec.append(0)
elif row == "data scientist":
y_test_vec.append(1)
elif row == "software engineer":
y_test_vec.append(2)
return(y_train_vec, y_test_vec)
if __name__ == "__main__":
#Load the data
all_X, all_y = load_data("ads_combined.csv")
all_X.to_csv("all_X_after_replacement.csv")
#Split the data into training and testing
X_train, X_test, y_train, y_test = train_test_split(all_X, all_y, test_size=0.10, random_state=123)
#Vectorizing the job descriptions: turning words of the job description into vectors do the classifier can do work on it
X_train_vec, X_test_vec = vectorize_training_data(X_train, X_test)
#Vectorize the labels: words into 0 or 1 or 2
y_train_vec, y_test_vec = vectorize_labels(y_train, y_test)
# training and test data and labels (everything) is in vectors (numbers) --ready to train a model
current_dir = os.path.dirname(os.path.realpath(__file__))
if not os.path.exists(os.path.join(current_dir, str("data/"))):
os.makedirs(os.path.join(current_dir, str("data/")))
sparse.save_npz("data/X_train_vec.npz", X_train_vec)
sparse.save_npz("data/X_test_vec.npz", X_test_vec)
np.save("data/y_train_vec.npy", y_train_vec)
np.save("data/y_test_vec.npy", y_test_vec)