-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
62 lines (48 loc) · 3.19 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import tensorflow as tf
class IAN(tf.keras.Model):
def __init__(self, config):
super(IAN, self).__init__()
self.embedding_dim = config.embedding_dim
self.n_hidden = config.n_hidden
self.n_class = config.n_class
self.l2_reg = config.l2_reg
self.max_aspect_len = config.max_aspect_len
self.max_context_len = config.max_context_len
self.embedding_matrix = config.embedding_matrix
self.aspect_lstm = tf.keras.layers.LSTM(self.n_hidden,
return_sequences=True,
recurrent_initializer='glorot_uniform',
stateful=True)
self.context_lstm = tf.keras.layers.LSTM(self.n_hidden,
return_sequences=True,
recurrent_activation='sigmoid',
recurrent_initializer='glorot_uniform',
stateful=True)
self.aspect_w = tf.contrib.eager.Variable(tf.random_normal([self.n_hidden, self.n_hidden]), name='aspect_w')
self.aspect_b = tf.contrib.eager.Variable(tf.zeros([self.n_hidden]), name='aspect_b')
self.context_w = tf.contrib.eager.Variable(tf.random_normal([self.n_hidden, self.n_hidden]), name='context_w')
self.context_b = tf.contrib.eager.Variable(tf.zeros([self.n_hidden]), name='context_b')
self.output_fc = tf.keras.layers.Dense(self.n_class, kernel_regularizer=tf.keras.regularizers.l2(l=self.l2_reg))
def call(self, data, dropout=0.5):
aspects, contexts, labels, aspect_lens, context_lens = data
aspect_inputs = tf.nn.embedding_lookup(self.embedding_matrix, aspects)
aspect_inputs = tf.cast(aspect_inputs, tf.float32)
aspect_inputs = tf.nn.dropout(aspect_inputs, keep_prob=dropout)
context_inputs = tf.nn.embedding_lookup(self.embedding_matrix, contexts)
context_inputs = tf.cast(context_inputs, tf.float32)
context_inputs = tf.nn.dropout(context_inputs, keep_prob=dropout)
aspect_outputs = self.aspect_lstm(aspect_inputs)
aspect_avg = tf.reduce_mean(aspect_outputs, 1)
context_outputs = self.context_lstm(context_inputs)
context_avg = tf.reduce_mean(context_outputs, 1)
aspect_att = tf.nn.softmax(tf.nn.tanh(tf.einsum('ijk,kl,ilm->ijm', aspect_outputs, self.aspect_w,
tf.expand_dims(context_avg, -1)) + self.aspect_b),
axis=1)
aspect_rep = tf.reduce_sum(aspect_att * aspect_outputs, 1)
context_att = tf.nn.softmax(tf.nn.tanh(tf.einsum('ijk,kl,ilm->ijm', context_outputs, self.context_w,
tf.expand_dims(aspect_avg, -1)) + self.context_b),
axis=1)
context_rep = tf.reduce_sum(context_att * context_outputs, 1)
rep = tf.concat([aspect_rep, context_rep], 1)
predict = self.output_fc(rep)
return predict, labels