-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_3d.py
396 lines (365 loc) · 22.9 KB
/
train_3d.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
import os
import sys
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
sys.path.append(os.path.dirname(os.path.realpath(__file__)))
sys.path.append(os.path.dirname(os.path.dirname(os.path.realpath(__file__))))
sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(os.path.realpath(__file__)))))
import time
import argparse
import copy
from tqdm import tqdm
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from easydict import EasyDict
import unfoldNd
import torch
from torch.utils.data import DataLoader, ConcatDataset, Subset, random_split
import torch.optim as optim
import torch.nn as nn
from torch.utils.tensorboard import SummaryWriter
from torchvision.transforms import ToPILImage
from data.dataset_3d import LADataset
from models import deeplabv3
from utils.loss_functions import DSCLoss
from utils.logger import logger as logging
from utils.utils import *
from utils.mask_generator import BoxMaskGenerator, AddMaskParamsToBatch, SegCollate
from utils.ramps import sigmoid_rampup
from utils.torch_utils import seed_torch
from utils.model_init import init_weight
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def get_args(known=False):
parser = argparse.ArgumentParser(description='PyTorch Implementation')
parser.add_argument('--seed', type=int, default=1, metavar='S', help='random seed (default: 1)')
parser.add_argument('--project', type=str, default=os.path.dirname(os.path.realpath(__file__)) + '/runs/UCMT', help='project path for saving results')
parser.add_argument('--backbone', type=str, default='VNet', choices=['VNet'], help='segmentation backbone')
parser.add_argument('--data_path', type=str, default='YOUR_DATA_PATH', help='path to the data')
parser.add_argument('--image_size', type=int, default=[80, 112, 112], help='the size of images for training and testing')
parser.add_argument('--labeled_percentage', type=float, default=0.1, help='the percentage of labeled data')
parser.add_argument('--is_mix', type=bool, default=True, help='cut mix')
parser.add_argument('--topk', type=int, default=2, help='top k')
parser.add_argument('--num_epochs', type=int, default=1000, help='number of epochs')
parser.add_argument('--batch_size', type=int, default=4, help='number of inputs per batch')
parser.add_argument('--num_workers', type=int, default=2, help='number of workers to use for dataloader')
parser.add_argument('--in_channels', type=int, default=1, help='input channels')
parser.add_argument('--num_classes', type=int, default=2, help='number of target categories')
parser.add_argument('--learning_rate', type=float, default=1e-4, help='learning rate')
parser.add_argument('--intra_weights', type=list, default=[1., 1.], help='inter classes weighted coefficients in the loss function')
parser.add_argument('--inter_weight', type=float, default=1., help='inter losses weighted coefficients in the loss function')
parser.add_argument('--log_freq', type=float, default=1, help='logging frequency of metrics accord to the current iteration')
parser.add_argument('--save_freq', type=float, default=10, help='saving frequency of model weights accord to the current epoch')
args = parser.parse_known_args()[0] if known else parser.parse_args()
return args
def get_data(args):
val_set = LADataset(image_path=args.data_path, stage='val', image_size=args.image_size, is_augmentation=False)
train_set = LADataset(image_path=args.data_path, stage='train', image_size=args.image_size, is_augmentation=True)
labeled_train_set, unlabeled_train_set = random_split(train_set, [int(len(train_set) * args.labeled_percentage),
len(train_set) - int(len(train_set) * args.labeled_percentage)],
generator=torch.Generator().manual_seed(args.seed))
# repeat the labeled set to have a equal length with the unlabeled set (dataset)
print('before: ', len(train_set), len(labeled_train_set), len(val_set))
labeled_ratio = len(train_set) // len(labeled_train_set)
labeled_train_set = ConcatDataset([labeled_train_set for i in range(labeled_ratio)])
labeled_train_set = ConcatDataset([labeled_train_set,
Subset(labeled_train_set, range(len(train_set) - len(labeled_train_set)))])
print('after: ', len(train_set), len(labeled_train_set), len(val_set))
assert len(labeled_train_set) == len(train_set)
train_labeled_dataloder = DataLoader(dataset=labeled_train_set, num_workers=args.num_workers, batch_size=args.batch_size, shuffle=True, pin_memory=True)
train_unlabeled_dataloder = DataLoader(dataset=train_set, num_workers=args.num_workers, batch_size=args.batch_size, shuffle=True, pin_memory=True)
val_dataloder = DataLoader(dataset=val_set, num_workers=args.num_workers, batch_size=args.batch_size, shuffle=False, pin_memory=True)
mask_generator = BoxMaskGenerator(prop_range=(0.25, 0.5),
n_boxes=3,
random_aspect_ratio=True,
prop_by_area=True,
within_bounds=True,
invert=True)
add_mask_params_to_batch = AddMaskParamsToBatch(mask_generator)
mask_collate_fn = SegCollate(batch_aug_fn=add_mask_params_to_batch)
aux_dataloder = DataLoader(dataset=train_set, num_workers=args.num_workers, batch_size=args.batch_size, shuffle=True, pin_memory=True, collate_fn=mask_collate_fn)
return train_labeled_dataloder, train_unlabeled_dataloder, val_dataloder, aux_dataloder
def main(is_debug=False):
args = get_args()
seed_torch(args.seed)
# Project Saving Path
project_path = args.project + '_{}_label_{}/'.format(args.backbone, args.labeled_percentage)
ensure_dir(project_path)
save_path = project_path + 'weights/'
ensure_dir(save_path)
# Tensorboard & Statistics Results & Logger
tb_dir = project_path + '/tensorboard{}'.format(time.strftime("%b%d_%d-%H-%M", time.localtime()))
writer = SummaryWriter(tb_dir)
metrics = EasyDict()
metrics.train_loss = []
metrics.train_s_loss = []
metrics.train_u_loss = []
metrics.train_x_loss = []
metrics.val_loss = []
logger = logging(project_path + 'train_val.log')
logger.info('PyTorch Version {}\n Experiment{}'.format(torch.__version__, project_path))
# Load Data
train_labeled_dataloader, train_unlabeled_dataloader, val_dataloader, aux_loader = get_data(args=args)
iters = len(train_labeled_dataloader)
val_iters = len(val_dataloader)
# Load Model & EMA
student1 = deeplabv3.__dict__[args.backbone](in_channels=args.in_channels, out_channels=args.num_classes).to(device)
init_weight(student1.net.classifier, nn.init.kaiming_normal_,
nn.BatchNorm3d, 1e-5, 0.1,
mode='fan_in', nonlinearity='relu')
student2 = deeplabv3.__dict__[args.backbone](in_channels=args.in_channels, out_channels=args.num_classes).to(device)
init_weight(student2.net.classifier, nn.init.kaiming_normal_,
nn.BatchNorm3d, 1e-5, 0.1,
mode='fan_in', nonlinearity='relu')
teacher = deeplabv3.__dict__[args.backbone](in_channels=args.in_channels, out_channels=args.num_classes).to(device)
init_weight(teacher.net.classifier, nn.init.kaiming_normal_,
nn.BatchNorm3d, 1e-5, 0.1,
mode='fan_in', nonlinearity='relu')
teacher.detach_model()
d, h, w = args.image_size[0] // 8, args.image_size[1] // 8, args.image_size[2] // 8
unfolds = unfoldNd.UnfoldNd(kernel_size=(d, h, w), stride=(d, h, w)).to(device)
folds = unfoldNd.FoldNd(output_size=(args.image_size[0], args.image_size[1], args.image_size[2]), kernel_size=(d, h, w), stride=(d, h, w)).to(device)
best_epoch = 0
best_loss = 100
# Criterion & Optimizer & LR Schedule
criterion_dsc = DSCLoss(num_classes=args.num_classes, intra_weights=args.intra_weights, inter_weight=args.inter_weight, device=device, is_3d=True)
optimizer1 = optim.AdamW(student1.parameters(), lr=args.learning_rate, betas=(0.9, 0.999))
optimizer2 = optim.AdamW(student2.parameters(), lr=args.learning_rate, betas=(0.9, 0.999))
# Train
since = time.time()
logger.info('start training')
for epoch in range(1, args.num_epochs + 1):
epoch_metrics = EasyDict()
epoch_metrics.train_loss = []
epoch_metrics.train_s_loss = []
epoch_metrics.train_u_loss = []
epoch_metrics.train_x_loss = []
if is_debug:
pbar = range(10)
else:
pbar = range(iters)
iter_train_labeled_dataloader = iter(train_labeled_dataloader)
iter_train_unlabeled_dataloader = iter(train_unlabeled_dataloader)
iter_aux_loader = iter(aux_loader)
############################
# Train
############################
student1.train()
student2.train()
teacher.train()
for idx in pbar:
# label data
image, label, imageA1, imageA2 = iter_train_labeled_dataloader.next()
image, label = image.to(device), label.to(device)
imageA1, imageA2 = imageA1.to(device), imageA2.to(device)
# unlabel data
uimage, _, uimageA1, uimageA2 = next(iter_train_unlabeled_dataloader)
uimage, uimageA1, uimageA2 = uimage.to(device), uimageA1.to(device), uimageA2.to(device)
# auxiliary data
aimage, alabel, aimageA1, aimageA2, amask = next(iter_aux_loader)
aimage, alabel = aimage.to(device), alabel.to(device)
aimageA1, aimageA2, amask = aimageA1.to(device), aimageA2.to(device), amask.to(device).long()
optimizer1.zero_grad()
optimizer2.zero_grad()
# the supervised learning path #
pred_s1_logits = student1(imageA1)['out']
pred_s1_probs = torch.softmax(pred_s1_logits, dim=1) # 8 4 256 256
pred_s2_logits = student2(imageA2)['out']
pred_s2_probs = torch.softmax(pred_s2_logits, dim=1) # 8 4 256 256
with torch.no_grad():
pred_t_logits = teacher(image)['out']
pred_t_probs = torch.softmax(pred_t_logits, dim=1) # 8 4 256 256
pred_u = teacher(uimage)
pred_u_logits = pred_u['out']
pred_u_probs = torch.softmax(pred_u_logits, dim=1) # 8 4 256 256
pred_u_pseudo = torch.argmax(pred_u_probs, dim=1) # 8 256 256
pred_u_conf = pred_u_probs.max(dim=1)[0].clone()
pred_u1A1 = student1(uimageA1)
pred_u1A1_logits = pred_u1A1['out']
pred_u1A1_probs = torch.softmax(pred_u1A1_logits, dim=1) # 8 4 256 256
pred_u1A1_pseudo = torch.argmax(pred_u1A1_probs, dim=1) # 8 256 256
pred_u1A1_conf = pred_u1A1_probs.max(dim=1)[0].clone()
pred_u2A2 = student2(uimageA2)
pred_u2A2_logits = pred_u2A2['out']
pred_u2A2_probs = torch.softmax(pred_u2A2_logits, dim=1) # 8 4 256 256
pred_u2A2_pseudo = torch.argmax(pred_u2A2_probs, dim=1) # 8 256 256
pred_u2A2_conf = pred_u2A2_probs.max(dim=1)[0].clone()
# supervised path
loss_s = (criterion_dsc(pred_s1_logits, label.squeeze(1).long()) + criterion_dsc(pred_s2_logits, label.squeeze(1).long())) / 2.
# unsupervised path
lambda_ = sigmoid_rampup(current=idx + len(pbar) * (epoch-1), rampup_length=len(pbar)*5)
loss_x = (criterion_dsc(pred_u1A1_logits, pred_u2A2_pseudo.detach()) + criterion_dsc(pred_u2A2_logits, pred_u1A1_pseudo.detach())) / 2.
loss_u = (criterion_dsc(pred_u1A1_logits, pred_u_pseudo.detach()) + criterion_dsc(pred_u2A2_logits, pred_u_pseudo.detach())) / 2.
loss = loss_s + loss_x * 0.1 * lambda_ + loss_u * 0.1 * lambda_
loss.backward()
optimizer1.step()
optimizer2.step()
teacher.weighted_update(student1, student2, ema_decay=0.99, cur_step=idx + len(pbar) * (epoch-1))
writer.add_scalar('train_s_loss', loss_s.item(), idx + len(pbar) * (epoch-1))
writer.add_scalar('train_u_loss', loss_u.item(), idx + len(pbar) * (epoch-1))
writer.add_scalar('train_x_loss', loss_x.item(), idx + len(pbar) * (epoch-1))
writer.add_scalar('train_loss', loss.item(), idx + len(pbar) * (epoch-1))
if idx % args.log_freq == 0:
logger.info("Train: Epoch/Epochs {}/{}, "
"iter/iters {}/{}, "
"loss {:.3f}, loss_s {:.3f}, loss_u {:.3f}, loss_x {:.3f}, lambda {:.3f}".format(epoch, args.num_epochs, idx, len(pbar),
loss.item(), loss_s.item(), loss_u.item(), loss_x.item(), lambda_))
epoch_metrics.train_loss.append(loss.item())
epoch_metrics.train_s_loss.append(loss_s.item())
epoch_metrics.train_u_loss.append(loss_u.item())
epoch_metrics.train_x_loss.append(loss_x.item())
'''
Step 2
'''
optimizer1.zero_grad()
optimizer2.zero_grad()
topk = args.topk
###########################
# supervised path #
###########################
# Estimate the uncertainty map
with torch.no_grad():
uncertainty_map11 = torch.mean(torch.stack([pred_s1_probs, pred_t_probs]), dim=0)
uncertainty_map11 = -1.0 * torch.sum(uncertainty_map11*torch.log(uncertainty_map11 + 1e-6), dim=1, keepdim=True)
uncertainty_map22 = torch.mean(torch.stack([pred_s2_probs, pred_t_probs]), dim=0)
uncertainty_map22 = -1.0 * torch.sum(uncertainty_map22*torch.log(uncertainty_map22 + 1e-6), dim=1, keepdim=True)
B, C = image.shape[0], image.shape[1]
# for student 1
x11 = unfolds(uncertainty_map11) # B x C*kernel_size[0]*kernel_size[1] x L
x11 = x11.view(B, 1, d, h, w, -1) # B x C x h x w x L
x11_mean = torch.mean(x11, dim=(1, 2, 3, 4)) # B x L
_, x11_max_index = torch.sort(x11_mean, dim=1, descending=True) # B x L B x L
# for student 2
x22 = unfolds(uncertainty_map22) # B x C*kernel_size[0]*kernel_size[1] x L
x22 = x22.view(B, 1, d, h, w, -1) # B x C x h x w x L
x22_mean = torch.mean(x22, dim=(1, 2, 3, 4)) # B x L
_, x22_max_index = torch.sort(x22_mean, dim=1, descending=True) # B x L B x L
img_unfold = unfolds(imageA1).view(B, C, d, h, w, -1) # B x C x h x w x L
lab_unfold = unfolds(label.float()).view(B, 1, d, h, w, -1) # B x C x h x w x L
for i in range(B):
img_unfold[i, :, :, :, :, x11_max_index[i, :topk]] = img_unfold[i, :, :, :, :, x22_max_index[i, -topk:]]
img_unfold[i, :, :, :, :, x22_max_index[i, :topk]] = img_unfold[i, :, :, :, :, x11_max_index[i, -topk:]]
lab_unfold[i, :, :, :, :, x11_max_index[i, :topk]] = lab_unfold[i, :, :, :, :, x22_max_index[i, -topk:]]
lab_unfold[i, :, :, :, :, x22_max_index[i, :topk]] = lab_unfold[i, :, :, :, :, x11_max_index[i, -topk:]]
image_umix = folds(img_unfold.view(B, C*d*h*w, -1))
label_umix = folds(lab_unfold.view(B, 1*d*h*w, -1))
pred_s1_logits = student1(image_umix)['out']
pred_s2_logits = student2(image_umix)['out']
###########################
# unsupervised path #
###########################
# Estimate the uncertainty map
with torch.no_grad():
uncertainty_map1 = torch.mean(torch.stack([pred_u1A1_probs, pred_u_probs]), dim=0)
uncertainty_map1 = -1.0 * torch.sum(uncertainty_map1*torch.log(uncertainty_map1 + 1e-6), dim=1, keepdim=True)
uncertainty_map2 = torch.mean(torch.stack([pred_u2A2_probs, pred_u_probs]), dim=0)
uncertainty_map2 = -1.0 * torch.sum(uncertainty_map2*torch.log(uncertainty_map2 + 1e-6), dim=1, keepdim=True)
B, C = uimage.shape[0], uimage.shape[1]
# for student 1
x1 = unfolds(uncertainty_map1) # B x C*kernel_size[0]*kernel_size[1] x L
x1 = x1.view(B, 1, d, h, w, -1) # B x C x h x w x L
x1_mean = torch.mean(x1, dim=(1, 2, 3, 4)) # B x L
_, x1_max_index = torch.sort(x1_mean, dim=1, descending=True) # B x L B x L
# for student 2
x2 = unfolds(uncertainty_map2) # B x C*kernel_size[0]*kernel_size[1] x L
x2 = x2.view(B, 1, d, h, w, -1) # B x C x h x w x L
x2_mean = torch.mean(x2, dim=(1, 2, 3, 4)) # B x L
_, x2_max_index = torch.sort(x2_mean, dim=1, descending=True) # B x L B x L
imgu_unfold = unfolds(uimageA1).view(B, C, d, h, w, -1) # B x C x h x w x L
pseudo_unfold = unfolds(pred_u_pseudo.unsqueeze(1).float()).view(B, 1, d, h, w, -1) # B x C x h x w x
pred_u_conf_unfold = unfolds(pred_u_conf.unsqueeze(1).float()).view(B, 1, d, h, w, -1) # B x C x h x w x
for i in range(B):
imgu_unfold[i, :, :, :, :, x1_max_index[i, :topk]] = imgu_unfold[i, :, :, :, :, x2_max_index[i, -topk:]]
imgu_unfold[i, :, :, :, :, x2_max_index[i, :topk]] = imgu_unfold[i, :, :, :, :, x1_max_index[i, -topk:]]
pseudo_unfold[i, :, :, :, :, x1_max_index[i, :topk]] = pseudo_unfold[i, :, :, :, :, x2_max_index[i, -topk:]]
pseudo_unfold[i, :, :, :, :, x2_max_index[i, :topk]] = pseudo_unfold[i, :, :, :, :, x1_max_index[i, -topk:]]
pred_u_conf_unfold[i, :, :, :, :, x1_max_index[i, :topk]] = pred_u_conf_unfold[i, :, :, :, :, x2_max_index[i, -topk:]]
pred_u_conf_unfold[i, :, :, :, :, x2_max_index[i, :topk]] = pred_u_conf_unfold[i, :, :, :, :, x1_max_index[i, -topk:]]
uimage_umix = folds(imgu_unfold.view(B, C*d*h*w, -1))
pred_u_pseudo_umix = folds(pseudo_unfold.view(B, 1*d*h*w, -1)).squeeze(1).long()
pred_u_conf_umix = folds(pred_u_conf_unfold.view(B, 1*d*h*w, -1)).squeeze(1).long()
# Re-Estimate the pseudo-labels on the new uimages
pred_u1A1 = student1(uimage_umix)
pred_u1A1_logits = pred_u1A1['out']
pred_u1A1_probs = torch.softmax(pred_u1A1_logits, dim=1) # 8 4 256 256
pred_u1A1_pseudo = torch.argmax(pred_u1A1_probs, dim=1) # 8 256 256
pred_u1A1_conf = pred_u1A1_probs.max(dim=1)[0].clone()
pred_u2A2 = student2(uimage_umix)
pred_u2A2_logits = pred_u2A2['out']
pred_u2A2_probs = torch.softmax(pred_u2A2_logits, dim=1) # 8 4 256 256
pred_u2A2_pseudo = torch.argmax(pred_u2A2_probs, dim=1) # 8 256 256
pred_u2A2_conf = pred_u1A1_probs.max(dim=1)[0].clone()
# supervised path
loss_s = (criterion_dsc(pred_s1_logits, label_umix.squeeze(1).long()) + criterion_dsc(pred_s2_logits, label_umix.squeeze(1).long())) / 2.
# unsupervised path
lambda_ = sigmoid_rampup(current=idx + len(pbar) * (epoch-1), rampup_length=len(pbar)*5)
loss_x = (criterion_dsc(pred_u1A1_logits, pred_u2A2_pseudo.detach()) + criterion_dsc(pred_u2A2_logits, pred_u1A1_pseudo.detach())) / 2.
loss_u = (criterion_dsc(pred_u1A1_logits, pred_u_pseudo_umix.detach()) + criterion_dsc(pred_u2A2_logits, pred_u_pseudo_umix.detach())) / 2.
loss = loss_s + loss_x * 0.1 * lambda_ + loss_u * 0.1 * lambda_
loss.backward()
optimizer1.step()
optimizer2.step()
teacher.weighted_update(student1, student2, ema_decay=0.99, coefficient=0.99, cur_step=idx + len(pbar) * (epoch-1))
metrics.train_loss.append(np.mean(epoch_metrics.train_loss))
metrics.train_s_loss.append(np.mean(epoch_metrics.train_s_loss))
metrics.train_u_loss.append(np.mean(epoch_metrics.train_u_loss))
metrics.train_x_loss.append(np.mean(epoch_metrics.train_x_loss))
############################
# Validation
############################
epoch_metrics.val_loss = []
iter_val_dataloader = iter(val_dataloader)
if is_debug:
val_pbar = range(10)
else:
val_pbar = range(val_iters)
teacher.eval()
with torch.no_grad():
for idx in val_pbar:
image, label = next(iter_val_dataloader)
image, label = image.to(device), label.to(device)
pred = teacher(image)['out']
loss = criterion_dsc(pred, label.squeeze(1).long())
writer.add_scalar('train_loss_sup', loss.item(), idx + len(val_pbar) * (epoch-1))
if idx % args.log_freq == 0:
logger.info("Val: Epoch/Epochs {}/{}, "
"iter/iters {}/{}, "
"loss {:.3f}".format(epoch, args.num_epochs, idx, len(val_pbar),
loss.item()))
epoch_metrics.val_loss.append(loss.item())
logger.info("Average: Epoch/Epoches {}/{}, "
"train epoch loss {:.3f}, "
"val epoch loss {:.3f}\n".format(epoch, args.num_epochs, np.mean(epoch_metrics.train_loss),
np.mean(epoch_metrics.val_loss)))
metrics.val_loss.append(np.mean(epoch_metrics.val_loss))
# Save Model
if np.mean(epoch_metrics.val_loss) <= best_loss:
best_epoch = epoch
best_loss = np.mean(epoch_metrics.val_loss)
torch.save(teacher.state_dict(), save_path + 'best.pth'.format(best_epoch))
torch.save(teacher.state_dict(), save_path + 'last.pth'.format(best_epoch))
############################
# Save Metrics
############################
data_frame = pd.DataFrame(
data={'loss': metrics.train_loss,
'loss_s': metrics.train_s_loss,
'loss_u': metrics.train_u_loss,
'loss_x': metrics.train_x_loss,
'val_loss': metrics.val_loss},
index=range(1, args.num_epochs + 1))
data_frame.to_csv(project_path + 'train_val_loss.csv', index_label='Epoch')
plt.figure()
plt.title("Loss During Training and Validating")
plt.plot(metrics.train_loss, label="Train")
plt.plot(metrics.val_loss, label="Val")
plt.xlabel("epochs")
plt.ylabel("Loss")
plt.legend()
plt.savefig(project_path + 'train_val_loss.png')
print(project_path)
time_elapsed = time.time() - since
logger.info('Training completed in {:.0f}m {:.0f}s'.format(
time_elapsed // 60, time_elapsed % 60))
logger.info('TRAINING FINISHED!')
if __name__ == '__main__':
main()