forked from rdcolema/keras-image-classification
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathimg_clf.py
301 lines (240 loc) · 11.1 KB
/
img_clf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
from keras.preprocessing.image import ImageDataGenerator, array_to_img, img_to_array, load_img
from keras.models import Sequential, model_from_json
from keras.layers import Convolution2D, MaxPooling2D, ZeroPadding2D, Activation, Dropout, Flatten, Dense
from keras.callbacks import EarlyStopping
from keras import optimizers
import numpy as np
import csv
from scipy.misc import imresize
import os
import h5py
### paths to weight files
weights_path = '../vgg16_weights.h5' # this is the pretrained vgg16 weights
top_model_weights_path = '../bottleneck_model.h5' # this is the best performing model before fine tuning
### paths to training and testing data
train_data_dir = '../data/train'
validation_data_dir = '../data/validation'
test_data_dir = '../data/test'
### other hyperparameters
nb_train_samples = 24500
nb_validation_samples = 500
nb_test_samples = 12500
nb_epoch = 25
img_width, img_height = 200, 200
# (you'll have to divide up the dataset into the right directories to match this setup
# since the kaggle dataset doesn't come with a validation split)
early_stopping = EarlyStopping(monitor='val_loss', patience=2, verbose=1, mode='auto')
# ^^ this stops training after validation loss stops improving
def save_bottlebeck_features():
"""builds the pretrained vgg16 model and runs it on our training and validation datasets"""
datagen = ImageDataGenerator(rescale=1./255)
# match the vgg16 architecture so we can load the pretrained weights into this model
model = Sequential()
model.add(ZeroPadding2D((1, 1), input_shape=(3, img_width, img_height)))
model.add(Convolution2D(64, 3, 3, activation='relu', name='conv1_1'))
model.add(ZeroPadding2D((1, 1)))
model.add(Convolution2D(64, 3, 3, activation='relu', name='conv1_2'))
model.add(MaxPooling2D((2, 2), strides=(2, 2)))
model.add(ZeroPadding2D((1, 1)))
model.add(Convolution2D(128, 3, 3, activation='relu', name='conv2_1'))
model.add(ZeroPadding2D((1, 1)))
model.add(Convolution2D(128, 3, 3, activation='relu', name='conv2_2'))
model.add(MaxPooling2D((2, 2), strides=(2, 2)))
model.add(ZeroPadding2D((1, 1)))
model.add(Convolution2D(256, 3, 3, activation='relu', name='conv3_1'))
model.add(ZeroPadding2D((1, 1)))
model.add(Convolution2D(256, 3, 3, activation='relu', name='conv3_2'))
model.add(ZeroPadding2D((1, 1)))
model.add(Convolution2D(256, 3, 3, activation='relu', name='conv3_3'))
model.add(MaxPooling2D((2, 2), strides=(2, 2)))
model.add(ZeroPadding2D((1, 1)))
model.add(Convolution2D(512, 3, 3, activation='relu', name='conv4_1'))
model.add(ZeroPadding2D((1, 1)))
model.add(Convolution2D(512, 3, 3, activation='relu', name='conv4_2'))
model.add(ZeroPadding2D((1, 1)))
model.add(Convolution2D(512, 3, 3, activation='relu', name='conv4_3'))
model.add(MaxPooling2D((2, 2), strides=(2, 2)))
model.add(ZeroPadding2D((1, 1)))
model.add(Convolution2D(512, 3, 3, activation='relu', name='conv5_1'))
model.add(ZeroPadding2D((1, 1)))
model.add(Convolution2D(512, 3, 3, activation='relu', name='conv5_2'))
model.add(ZeroPadding2D((1, 1)))
model.add(Convolution2D(512, 3, 3, activation='relu', name='conv5_3'))
model.add(MaxPooling2D((2, 2), strides=(2, 2)))
# load VGG16 weights
f = h5py.File(weights_path)
for k in range(f.attrs['nb_layers']):
if k >= len(model.layers):
break
g = f['layer_{}'.format(k)]
weights = [g['param_{}'.format(p)] for p in range(g.attrs['nb_params'])]
model.layers[k].set_weights(weights)
f.close()
print 'Model loaded.'
generator = datagen.flow_from_directory(
train_data_dir,
target_size=(img_width, img_height),
batch_size=32,
class_mode=None,
shuffle=False)
bottleneck_features_train = model.predict_generator(generator, nb_train_samples)
np.save(open('bottleneck_features_train.npy', 'wb'), bottleneck_features_train)
generator = datagen.flow_from_directory(
validation_data_dir,
target_size=(img_width, img_height),
batch_size=32,
class_mode=None,
shuffle=False)
bottleneck_features_validation = model.predict_generator(generator, nb_validation_samples)
np.save(open('bottleneck_features_validation.npy', 'wb'), bottleneck_features_validation)
def train_top_model():
"""trains the classifier"""
train_data = np.load(open('bottleneck_features_train.npy', 'rb'))
train_labels = np.array([0] * (nb_train_samples / 2) + [1] * (nb_train_samples / 2))
validation_data = np.load(open('bottleneck_features_validation.npy', 'rb'))
validation_labels = np.array([0] * (nb_validation_samples / 2) + [1] * (nb_validation_samples / 2))
model = Sequential()
model.add(Flatten(input_shape=train_data.shape[1:]))
model.add(Dense(256, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(1, activation='sigmoid'))
model.compile(optimizer='rmsprop', loss='binary_crossentropy', metrics=['accuracy'])
model.fit(train_data, train_labels,
nb_epoch=nb_epoch,
batch_size=32,
validation_data=(validation_data, validation_labels),
callbacks=[early_stopping])
# save the model weights
model.save_weights(top_model_weights_path)
def fine_tune():
"""recreates top model architecture/weights and fine tunes with image augmentation and optimizations"""
# reconstruct vgg16 model
model = Sequential()
model.add(ZeroPadding2D((1, 1), input_shape=(3, img_width, img_height)))
model.add(Convolution2D(64, 3, 3, activation='relu', name='conv1_1'))
model.add(ZeroPadding2D((1, 1)))
model.add(Convolution2D(64, 3, 3, activation='relu', name='conv1_2'))
model.add(MaxPooling2D((2, 2), strides=(2, 2)))
model.add(ZeroPadding2D((1, 1)))
model.add(Convolution2D(128, 3, 3, activation='relu', name='conv2_1'))
model.add(ZeroPadding2D((1, 1)))
model.add(Convolution2D(128, 3, 3, activation='relu', name='conv2_2'))
model.add(MaxPooling2D((2, 2), strides=(2, 2)))
model.add(ZeroPadding2D((1, 1)))
model.add(Convolution2D(256, 3, 3, activation='relu', name='conv3_1'))
model.add(ZeroPadding2D((1, 1)))
model.add(Convolution2D(256, 3, 3, activation='relu', name='conv3_2'))
model.add(ZeroPadding2D((1, 1)))
model.add(Convolution2D(256, 3, 3, activation='relu', name='conv3_3'))
model.add(MaxPooling2D((2, 2), strides=(2, 2)))
model.add(ZeroPadding2D((1, 1)))
model.add(Convolution2D(512, 3, 3, activation='relu', name='conv4_1'))
model.add(ZeroPadding2D((1, 1)))
model.add(Convolution2D(512, 3, 3, activation='relu', name='conv4_2'))
model.add(ZeroPadding2D((1, 1)))
model.add(Convolution2D(512, 3, 3, activation='relu', name='conv4_3'))
model.add(MaxPooling2D((2, 2), strides=(2, 2)))
model.add(ZeroPadding2D((1, 1)))
model.add(Convolution2D(512, 3, 3, activation='relu', name='conv5_1'))
model.add(ZeroPadding2D((1, 1)))
model.add(Convolution2D(512, 3, 3, activation='relu', name='conv5_2'))
model.add(ZeroPadding2D((1, 1)))
model.add(Convolution2D(512, 3, 3, activation='relu', name='conv5_3'))
model.add(MaxPooling2D((2, 2), strides=(2, 2)))
# load vgg16 weights
f = h5py.File(weights_path)
for k in range(f.attrs['nb_layers']):
if k >= len(model.layers):
break
g = f['layer_{}'.format(k)]
weights = [g['param_{}'.format(p)] for p in range(g.attrs['nb_params'])]
model.layers[k].set_weights(weights)
f.close()
# add the classification layers
top_model = Sequential()
top_model.add(Flatten(input_shape=model.output_shape[1:]))
top_model.add(Dense(256, activation='relu'))
top_model.add(Dropout(0.5))
top_model.add(Dense(1, activation='sigmoid'))
top_model.load_weights(top_model_weights_path)
# add the model on top of the convolutional base
model.add(top_model)
# set the first 25 layers (up to the last conv block)
# to non-trainable (weights will not be updated)
for layer in model.layers[:25]:
layer.trainable = False
# compile the model with a SGD/momentum optimizer
# and a very slow learning rate.
model.compile(loss='binary_crossentropy',
optimizer=optimizers.SGD(lr=1e-4, momentum=0.9),
metrics=['accuracy'])
# prepare data augmentation configuration
train_datagen = ImageDataGenerator(
rescale=1./255,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True)
test_datagen = ImageDataGenerator(rescale=1./255)
train_generator = train_datagen.flow_from_directory(
train_data_dir,
target_size=(img_height, img_width),
batch_size=32,
class_mode='binary')
validation_generator = test_datagen.flow_from_directory(
validation_data_dir,
target_size=(img_height, img_width),
batch_size=32,
class_mode='binary')
# fine-tune the model
model.fit_generator(
train_generator,
samples_per_epoch=nb_train_samples,
nb_epoch=nb_epoch,
validation_data=validation_generator,
nb_val_samples=nb_validation_samples,
callbacks=[early_stopping])
# save the model
json_string = model.to_json()
with open('final_model_architecture.json', 'w') as f:
f.write(json_string)
model.save_weights('final_weights.h5')
# return the model for convenience when making predictions
return model
def predict_labels(model):
"""writes test image labels and predictions to csv"""
test_datagen = ImageDataGenerator(rescale=1./255)
test_generator = test_datagen.flow_from_directory(
test_data_dir,
target_size=(img_height, img_width),
batch_size=32,
shuffle=False,
class_mode=None)
base_path = test_data_dir + "/test/"
with open("prediction.csv", "w") as f:
p_writer = csv.writer(f, delimiter=',', lineterminator='\n')
for _, _, imgs in os.walk(base_path):
for im in imgs:
pic_id = im.split(".")[0]
img = load_img(base_path + im)
img = imresize(img, size=(img_height, img_width))
test_x = img_to_array(img).reshape(3, img_height, img_width)
test_x = test_x.reshape((1,) + test_x.shape)
test_generator = test_datagen.flow(test_x,
batch_size=1,
shuffle=False)
prediction = model.predict_generator(test_generator, 1)[0][0]
p_writer.writerow([pic_id, prediction])
def load_model():
"""Loads a model from an earlier run"""
json_file = open('final_model_architecture.json', 'r')
model_json = json_file.read()
json_file.close()
model = model_from_json(model_json)
model.load_weights('final_weights.h5')
print "Model Loaded."
return model
if __name__ == "__main__":
save_bottlebeck_features()
train_top_model()
model = fine_tune()
predict_labels(model)