forked from rdcolema/keras-image-classification
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvgg_bn.py
105 lines (81 loc) · 4.1 KB
/
vgg_bn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
import numpy as np
from keras.layers.normalization import BatchNormalization
from keras.models import Sequential
from keras.layers.core import Flatten, Dense, Dropout, Lambda
from keras.layers.convolutional import Convolution2D, MaxPooling2D, ZeroPadding2D
from keras.optimizers import Adam
from keras.preprocessing.image import ImageDataGenerator
vgg_mean = np.array([123.68, 116.779, 103.939], dtype=np.float32).reshape((3,1,1))
def vgg_preprocess(x):
x = x - vgg_mean
return x[:, ::-1] # reverse axis rgb->bgr
class Vgg16BN():
"""The VGG 16 Imagenet model with Batch Normalization for the Dense Layers"""
def __init__(self, size=(224, 224), n_classes=2, lr=0.001, batch_size=64):
self.weights_file = 'vgg16_bn.h5' # download from: http://www.platform.ai/models/
self.size = size
self.n_classes = n_classes
self.lr = lr
self.batch_size = batch_size
self.build()
def predict(self, data):
return self.model.predict(data)
def ConvBlock(self, layers, filters):
model = self.model
for i in range(layers):
model.add(ZeroPadding2D((1, 1)))
model.add(Convolution2D(filters, 3, 3, activation='relu'))
model.add(MaxPooling2D((2, 2), strides=(2, 2)))
def FCBlock(self):
model = self.model
model.add(Dense(4096, activation='relu'))
model.add(BatchNormalization())
model.add(Dropout(0.5))
def build(self, ft=True):
model = self.model = Sequential()
model.add(Lambda(vgg_preprocess, input_shape=(3,) + self.size))
self.ConvBlock(2, 64)
self.ConvBlock(2, 128)
self.ConvBlock(3, 256)
self.ConvBlock(3, 512)
self.ConvBlock(3, 512)
model.add(Flatten())
self.FCBlock()
self.FCBlock()
model.add(Dense(self.n_classes, activation='softmax'))
model.load_weights(self.weights_file)
if ft:
self.finetune()
self.compile()
def finetune(self):
model = self.model
model.pop()
for layer in model.layers:
layer.trainable=False
model.add(Dense(self.n_classes, activation='softmax'))
def compile(self):
self.model.compile(optimizer=Adam(lr=self.lr),
loss='categorical_crossentropy', metrics=['accuracy'])
def fit(self, trn_path, val_path, nb_trn_samples, nb_val_samples, nb_epoch=1, callbacks=None, aug=False):
if aug:
train_datagen = ImageDataGenerator(rotation_range=10, width_shift_range=0.05, zoom_range=0.05,
channel_shift_range=10, height_shift_range=0.05, shear_range=0.05,
horizontal_flip=True)
else:
train_datagen = ImageDataGenerator()
trn_gen = train_datagen.flow_from_directory(trn_path, target_size=self.size, batch_size=self.batch_size,
class_mode='categorical', shuffle=True)
val_gen = ImageDataGenerator().flow_from_directory(val_path, target_size=self.size, batch_size=self.batch_size,
class_mode='categorical', shuffle=True)
self.model.fit_generator(trn_gen, samples_per_epoch=nb_trn_samples, nb_epoch=nb_epoch, verbose=2,
validation_data=val_gen, nb_val_samples=nb_val_samples, callbacks=callbacks)
def test(self, test_path, nb_test_samples, aug=False):
if aug:
test_datagen = ImageDataGenerator(rotation_range=10, width_shift_range=0.05, zoom_range=0.05,
channel_shift_range=10, height_shift_range=0.05, shear_range=0.05,
horizontal_flip=True)
else:
test_datagen = ImageDataGenerator()
test_gen = test_datagen.flow_from_directory(test_path, target_size=self.size, batch_size=self.batch_size,
class_mode=None, shuffle=False)
return self.model.predict_generator(test_gen, val_samples=nb_test_samples), test_gen.filenames