forked from pytorch/torchtitan
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmultinode_trainer.slurm
62 lines (47 loc) · 1.8 KB
/
multinode_trainer.slurm
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
#!/bin/bash
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
# --- This script is optimized for AWS with EFA
# --- adjust NCCL_BUFFSIZE if you encounter memory
# --- constraint issues or to tune for improved performance.
# ---
#SBATCH --job-name=torchtitan_multi_node
#SBATCH --ntasks=4
#SBATCH --nodes=4
#SBATCH --gpus-per-task=8
#SBATCH --cpus-per-task=96
#SBATCH --partition=train
nodes=( $( scontrol show hostnames $SLURM_JOB_NODELIST ) )
nodes_array=($nodes)
head_node=${nodes_array[0]}
head_node_ip=$(srun --nodes=1 --ntasks=1 -w "$head_node" hostname --ip-address)
echo Node IP: $head_node_ip
export LOGLEVEL=INFO
# Enable for A100
export FI_PROVIDER="efa"
# Ensure that P2P is available
# export NCCL_P2P_DISABLE=1
export NCCL_IB_DISABLE=1
# debugging flags (optional)
export NCCL_DEBUG=WARN
export PYTHONFAULTHANDLER=1
# optional debug settings
# export NCCL_DEBUG=INFO
# NCCL_DEBUG_SUBSYS=INIT,GRAPH,ENV
export LD_LIBRARY_PATH=/opt/amazon/efa/lib:$LD_LIBRARY_PATH
export LD_LIBRARY_PATH=/usr/local/lib/:$LD_LIBRARY_PATH
export CUDA_LAUNCH_BLOCKING=0
# on your cluster you might need these:
# set the network interface
export NCCL_SOCKET_IFNAME="eth0,en,eth,em,bond"
export NCCL_BUFFSIZE=2097152
#export TORCH_DIST_INIT_BARRIER=1
export FI_EFA_SET_CUDA_SYNC_MEMOPS=0
CONFIG_FILE=${CONFIG_FILE:-"./train_configs/llama2_13b.toml"}
dcgmi profile --pause
# adjust sbatch --ntasks and sbatch --nodes above and --nnodes below
# to your specific node count, and update target launch file.
srun torchrun --nnodes 4 --nproc_per_node 8 --rdzv_id 101 --rdzv_backend c10d --rdzv_endpoint "$head_node_ip:29500" ./train.py --job.config_file ${CONFIG_FILE}
dcgmi profile --resume