forked from gregstoll/cluesolver
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathagents.py
874 lines (692 loc) · 30.4 KB
/
agents.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
"""Implement Agents and Environments (Chapters 1-2).
The class hierarchies are as follows:
Object ## A physical object that can exist in an environment
Agent
Wumpus
RandomAgent
ReflexVacuumAgent
...
Dirt
Wall
...
Environment ## An environment holds objects, runs simulations
XYEnvironment
VacuumEnvironment
WumpusEnvironment
EnvGUI ## A window with a graphical representation of the Environment
EnvToolbar ## contains buttons for controlling EnvGUI
EnvCanvas ## Canvas to display the environment of an EnvGUI
"""
# TO DO:
# Implement grabbing correctly.
# When an object is grabbed, does it still have a location?
# What if it is released?
# What if the grabbed or the grabber is deleted?
# What if the grabber moves?
#
# Speed control in GUI does not have any effect -- fix it.
from utils import *
import random, copy
# Additional modules needed for loading non-bitmap images
import Image # Python Imaging Library (PIL)
import ImageTk # PIL + Tk
#______________________________________________________________________________
class Object (object):
"""This represents any physical object that can appear in an Environment.
You subclass Object to get the objects you want. Each object can have a
.__name__ slot (used for output only)."""
def __repr__(self):
return '<%s>' % getattr(self, '__name__', self.__class__.__name__)
def is_alive(self):
"""Objects that are 'alive' should return true."""
return hasattr(self, 'alive') and self.alive
def show_state (self):
"""Display the agent's internal state. Subclasses should override."""
print "I don't know how to show_state."
def display(self, canvas, x, y, width, height):
# Do we need this?
"""Display an image of this Object on the canvas."""
pass
def get_image_file (self):
raise NoImageException()
class Agent (Object):
"""An Agent is a subclass of Object with one required slot,
.program, which should hold a function that takes one argument, the
percept, and returns an action. (What counts as a percept or action
will depend on the specific environment in which the agent exists.)
Note that 'program' is a slot, not a method. If it were a method,
then the program could 'cheat' and look at aspects of the agent.
It's not supposed to do that: the program can only look at the
percepts. An agent program that needs a model of the world (and of
the agent itself) will have to build and maintain its own model.
There is an optional slots, .performance, which is a number giving
the performance measure of the agent in its environment."""
def __init__(self):
self.program = self.make_agent_program()
self.alive = True
self.bump = False
def make_agent_program (self):
def program(percept):
return raw_input('Percept=%s; action? ' % percept)
return program
def can_grab (self, obj):
"""Returns True if this agent can grab this object.
Override for appropriate subclasses of Agent and Object."""
return False
def TraceAgent(agent):
"""Wrap the agent's program to print its input and output. This will let
you see what the agent is doing in the environment."""
old_program = agent.program
def new_program(percept):
action = old_program(percept)
print '%s perceives %s and does %s' % (agent, percept, action)
return action
agent.program = new_program
return agent
#______________________________________________________________________________
class TableDrivenAgent (Agent):
"""This agent selects an action based on the percept sequence.
It is practical only for tiny domains.
To customize it you provide a table to the constructor. [Fig. 2.7]"""
def __init__(self, table):
"Supply as table a dictionary of all {percept_sequence:action} pairs."
## The agent program could in principle be a function, but because
## it needs to store state, we make it a callable instance of a class.
self.table = table
super(TableDrivenAgent, self).__init__()
def make_agent_program (self):
table = self.table
percepts = []
def program(percept):
percepts.append(percept)
action = table.get(tuple(percepts))
return action
return program
class RandomAgent (Agent):
"An agent that chooses an action at random, ignoring all percepts."
def __init__(self, actions):
self.actions = actions
super(RandomAgent, self).__init__()
def make_agent_program (self):
actions = self.actions
return lambda percept: random.choice(actions)
#______________________________________________________________________________
loc_A, loc_B = (0, 0), (1, 0) # The two locations for the Vacuum world
class ReflexVacuumAgent (Agent):
"A reflex agent for the two-state vacuum environment. [Fig. 2.8]"
def __init__(self):
super(ReflexVacuumAgent, self).__init__()
def make_agent_program (self):
def program((location, status)):
if status == 'Dirty': return 'Suck'
elif location == loc_A: return 'Right'
elif location == loc_B: return 'Left'
return program
def get_image_file (self): return "images/vacuum.png"
def RandomVacuumAgent():
"Randomly choose one of the actions from the vaccum environment."
return RandomAgent(['Right', 'Left', 'Suck', 'NoOp'])
def TableDrivenVacuumAgent():
"[Fig. 2.3]"
table = {((loc_A, 'Clean'),): 'Right',
((loc_A, 'Dirty'),): 'Suck',
((loc_B, 'Clean'),): 'Left',
((loc_B, 'Dirty'),): 'Suck',
((loc_A, 'Clean'), (loc_A, 'Clean')): 'Right',
((loc_A, 'Clean'), (loc_A, 'Dirty')): 'Suck',
# ...
((loc_A, 'Clean'), (loc_A, 'Clean'), (loc_A, 'Clean')): 'Right',
((loc_A, 'Clean'), (loc_A, 'Clean'), (loc_A, 'Dirty')): 'Suck',
# ...
}
return TableDrivenAgent(table)
class ModelBasedVacuumAgent (Agent):
"An agent that keeps track of what locations are clean or dirty."
def __init__(self):
self.model = {loc_A: None, loc_B: None}
super(ModelBasedVacuumAgent, self).__init__()
def make_agent_program (self):
model = self.model
def program((location, status)):
"Same as ReflexVacuumAgent, except if everything is clean, do NoOp"
model[location] = status ## Update the model here
if model[loc_A] == model[loc_B] == 'Clean': return 'NoOp'
elif status == 'Dirty': return 'Suck'
elif location == loc_A: return 'Right'
elif location == loc_B: return 'Left'
return program
#______________________________________________________________________________
class Environment (object):
"""Abstract class representing an Environment. 'Real' Environment classes
inherit from this. Your Environment will typically need to implement:
percept: Define the percept that an agent sees.
execute_action: Define the effects of executing an action.
Also update the agent.performance slot.
The environment keeps a list of .objects and .agents (which is a subset
of .objects). Each agent has a .performance slot, initialized to 0.
Each object has a .location slot, even though some environments may not
need this."""
def __init__(self):
self.objects = []
self.agents = []
def object_classes (self):
return [] ## List of classes that can go into environment
def percept(self, agent):
"Return the percept that the agent sees at this point. Override this."
abstract
def execute_action(self, agent, action):
"Change the world to reflect this action. Override this."
abstract
def default_location(self, object):
"Default location to place a new object with unspecified location."
return None
def exogenous_change(self):
"If there is spontaneous change in the world, override this."
pass
def is_done(self):
"By default, we're done when we can't find a live agent."
for agent in self.agents:
if agent.is_alive(): return False
return True
def step(self):
"""Run the environment for one time step. If the
actions and exogenous changes are independent, this method will
do. If there are interactions between them, you'll need to
override this method."""
if not self.is_done():
actions = [agent.program(self.percept(agent))
for agent in self.agents]
for (agent, action) in zip(self.agents, actions):
self.execute_action(agent, action)
self.exogenous_change()
def run(self, steps=1000):
"""Run the Environment for given number of time steps."""
for step in range(steps):
if self.is_done(): return
self.step()
def list_objects_at (self, location, oclass=Object):
"Return all objects exactly at a given location."
return [obj for obj in self.objects
if obj.location == location and isinstance(obj, oclass)]
def some_objects_at (self, location, oclass=Object):
"""Return true if at least one of the objects at location
is an instance of class oclass.
'Is an instance' in the sense of 'isinstance',
which is true if the object is an instance of a subclass of oclass."""
return self.list_objects_at(location, oclass) != []
def add_object(self, obj, location=None):
"""Add an object to the environment, setting its location. Also keep
track of objects that are agents. Shouldn't need to override this."""
obj.location = location or self.default_location(obj)
self.objects.append(obj)
if isinstance(obj, Agent):
obj.performance = 0
self.agents.append(obj)
return self
def delete_object (self, obj):
"""Remove an object from the environment."""
try:
self.objects.remove(obj)
except ValueError, e:
print e
print " in Environment delete_object"
print " Object to be removed: %s at %s" % (obj, obj.location)
trace_list(" from list", self.objects)
if obj in self.agents:
self.agents.remove(obj)
def trace_list (name, objlist):
ol_list = [(obj, obj.location) for obj in objlist]
print "%s: %s" % (name, ol_list)
class XYEnvironment (Environment):
"""This class is for environments on a 2D plane, with locations
labelled by (x, y) points, either discrete or continuous.
Agents perceive objects within a radius. Each agent in the
environment has a .location slot which should be a location such
as (0, 1), and a .holding slot, which should be a list of objects
that are held."""
def __init__(self, width=10, height=10):
super(XYEnvironment, self).__init__()
self.width = width
self.height = height
#update(self, objects=[], agents=[], width=width, height=height)
self.observers = []
def objects_near(self, location, radius):
"Return all objects within radius of location."
radius2 = radius * radius
return [obj for obj in self.objects
if distance2(location, obj.location) <= radius2]
def percept(self, agent):
"By default, agent perceives objects within radius r."
### Error below: objects_near requires also a radius argument
return [self.object_percept(obj, agent)
for obj in self.objects_near(agent)] ### <- error
def execute_action(self, agent, action):
agent.bump = False
if action == 'TurnRight':
agent.heading = self.turn_heading(agent.heading, -1)
elif action == 'TurnLeft':
agent.heading = self.turn_heading(agent.heading, +1)
elif action == 'Forward':
self.move_to(agent, vector_add(agent.heading, agent.location))
# elif action == 'Grab':
# objs = [obj for obj in self.list_objects_at(agent.location)
# if agent.can_grab(obj)]
# if objs:
# agent.holding.append(objs[0])
elif action == 'Release':
if agent.holding:
agent.holding.pop()
def object_percept(self, obj, agent): #??? Should go to object?
"Return the percept for this object."
return obj.__class__.__name__
def default_location(self, object):
return (random.choice(self.width), random.choice(self.height))
def move_to(self, obj, destination):
"Move an object to a new location."
# Bumped?
obj.bump = self.some_objects_at(destination, Obstacle)
if not obj.bump:
# Move object and report to observers
obj.location = destination
for o in self.observers:
o.object_moved(obj)
def add_object(self, obj, location=(1, 1)):
super(XYEnvironment, self).add_object(obj, location)
obj.holding = []
obj.held = None
# self.objects.append(obj) # done in Environment!
# Report to observers
for obs in self.observers:
obs.object_added(obj)
def delete_object (self, obj):
super(XYEnvironment, self).delete_object(obj)
# Any more to do? Object holding anything or being held?
for obs in self.observers:
obs.object_deleted(obj)
def add_walls(self):
"Put walls around the entire perimeter of the grid."
for x in range(self.width):
self.add_object(Wall(), (x, 0))
self.add_object(Wall(), (x, self.height-1))
for y in range(self.height):
self.add_object(Wall(), (0, y))
self.add_object(Wall(), (self.width-1, y))
def add_observer (self, observer):
"""Adds an observer to the list of observers.
An observer is typically an EnvGUI.
Each observer is notified of changes in move_to and add_object,
by calling the observer's methods object_moved(obj, old_loc, new_loc)
and object_added(obj, loc)."""
self.observers.append(observer)
def turn_heading(self, heading, inc,
headings=[(1, 0), (0, 1), (-1, 0), (0, -1)]):
"Return the heading to the left (inc=+1) or right (inc=-1) in headings."
return headings[(headings.index(heading) + inc) % len(headings)]
class Obstacle (Object):
"""Something that can cause a bump, preventing an agent from
moving into the same square it's in."""
pass
class Wall (Obstacle):
def get_image_file (self):
return "images/wall-icon.jpg"
#______________________________________________________________________________
## Vacuum environment
class Dirt (Object):
def get_image_file (self):
return "images/dirt05-icon.jpg" # "images/dirt.png"
class VacuumEnvironment (XYEnvironment):
"""The environment of [Ex. 2.12]. Agent perceives dirty or clean,
and bump (into obstacle) or not; 2D discrete world of unknown size;
performance measure is 100 for each dirt cleaned, and -1 for
each turn taken."""
def __init__(self, width=10, height=10):
super(VacuumEnvironment, self).__init__(width, height)
self.add_walls()
def object_classes (self):
return [Wall, Dirt, ReflexVacuumAgent, RandomVacuumAgent,
TableDrivenVacuumAgent, ModelBasedVacuumAgent]
def percept(self, agent):
"""The percept is a tuple of ('Dirty' or 'Clean', 'Bump' or 'None').
Unlike the TrivialVacuumEnvironment, location is NOT perceived."""
status = if_(self.some_objects_at(agent.location, Dirt),
'Dirty', 'Clean')
bump = if_(agent.bump, 'Bump', 'None')
return (status, bump)
def execute_action(self, agent, action):
if action == 'Suck':
dirt_list = self.list_objects_at(agent.location, Dirt)
if dirt_list != []:
dirt = dirt_list[0]
agent.performance += 100
self.delete_object(dirt)
else:
super(VacuumEnvironment, self).execute_action(agent, action)
if action != 'Nop':
agent.performance -= 1
class TrivialVacuumEnvironment (Environment):
"""This environment has two locations, A and B. Each can be Dirty
or Clean. The agent perceives its location and the location's
status. This serves as an example of how to implement a simple
Environment."""
def __init__(self):
super(TrivialVacuumEnvironment, self).__init__()
self.status = {loc_A:random.choice(['Clean', 'Dirty']),
loc_B:random.choice(['Clean', 'Dirty'])}
def object_classes (self):
return [Wall, Dirt, ReflexVacuumAgent, RandomVacuumAgent,
TableDrivenVacuumAgent, ModelBasedVacuumAgent]
def percept(self, agent):
"Returns the agent's location, and the location status (Dirty/Clean)."
return (agent.location, self.status[agent.location])
def execute_action(self, agent, action):
"""Change agent's location and/or location's status; track performance.
Score 10 for each dirt cleaned; -1 for each move."""
if action == 'Right':
agent.location = loc_B
agent.performance -= 1
elif action == 'Left':
agent.location = loc_A
agent.performance -= 1
elif action == 'Suck':
if self.status[agent.location] == 'Dirty':
agent.performance += 10
self.status[agent.location] = 'Clean'
def default_location(self, object):
"Agents start in either location at random."
return random.choice([loc_A, loc_B])
#______________________________________________________________________________
class SimpleReflexAgent (Agent):
"""This agent takes action based solely on the percept. [Fig. 2.13]"""
def __init__(self, rules, interpret_input):
self.rules = rules
self.interpret_input = interpret_input
super(SimpleReflexAgent, self).__init__()
def make_agent_program (self):
rules = self.rules
interpret_input = self.interpret_input
def program(percept):
state = interpret_input(percept)
rule = rule_match(state, rules)
action = rule.action
return action
return program
class ReflexAgentWithState (Agent):
"""This agent takes action based on the percept and state. [Fig. 2.16]"""
def __init__(self, rules, udpate_state):
self.rules = rules
self.update_state = update_state
super(ReflexAgentWithState, self).__init__()
def make_agent_program (self):
rules = self.rules
update_state = self.update_state
state = None
action = None
def program(percept):
state = update_state(state, action, percept)
rule = rule_match(state, rules)
action = rule.action
return action
return program
#______________________________________________________________________________
## The Wumpus World
class Gold (Object): pass
class Pit (Object): pass
class Arrow (Object): pass
class Wumpus (Agent): pass
class Explorer (Agent): pass
class WumpusEnvironment(XYEnvironment):
def __init__(self, width=10, height=10):
super(WumpusEnvironment, self).__init__(width, height)
self.add_walls()
def object_classes (self):
return [Wall, Gold, Pit, Arrow, Wumpus, Explorer]
## Needs a lot of work ...
#______________________________________________________________________________
def compare_agents(EnvFactory, AgentFactories, n=10, steps=1000):
"""See how well each of several agents do in n instances of an environment.
Pass in a factory (constructor) for environments, and several for agents.
Create n instances of the environment, and run each agent in copies of
each one for steps. Return a list of (agent, average-score) tuples."""
envs = [EnvFactory() for i in range(n)]
return [(A, test_agent(A, steps, copy.deepcopy(envs)))
for A in AgentFactories]
def test_agent(AgentFactory, steps, envs):
"Return the mean score of running an agent in each of the envs, for steps"
total = 0
for env in envs:
agent = AgentFactory()
env.add_object(agent)
env.run(steps)
total += agent.performance
return float(total)/len(envs)
#_________________________________________________________________________
_docex = """
a = ReflexVacuumAgent()
a.program
a.program((loc_A, 'Clean')) ==> 'Right'
a.program((loc_B, 'Clean')) ==> 'Left'
a.program((loc_A, 'Dirty')) ==> 'Suck'
a.program((loc_A, 'Dirty')) ==> 'Suck'
e = TrivialVacuumEnvironment()
e.add_object(TraceAgent(ModelBasedVacuumAgent()))
e.run(5)
## Environments, and some agents, are randomized, so the best we can
## give is a range of expected scores. If this test fails, it does
## not necessarily mean something is wrong.
envs = [TrivialVacuumEnvironment() for i in range(100)]
def testv(A): return test_agent(A, 4, copy.deepcopy(envs))
testv(ModelBasedVacuumAgent)
(7 < _ < 11) ==> True
testv(ReflexVacuumAgent)
(5 < _ < 9) ==> True
testv(TableDrivenVacuumAgent)
(2 < _ < 6) ==> True
testv(RandomVacuumAgent)
(0.5 < _ < 3) ==> True
"""
#______________________________________________________________________________
# GUI - Graphical User Interface for Environments
# If you do not have Tkinter installed, either get a new installation of Python
# (Tkinter is standard in all new releases), or delete the rest of this file
# and muddle through without a GUI.
import Tkinter as tk
class EnvGUI (tk.Tk, object):
def __init__ (self, env, title = 'AIMA GUI', cellwidth=50, n=10):
# Initialize window
super(EnvGUI, self).__init__()
self.title(title)
# Create components
canvas = EnvCanvas(self, env, cellwidth, n)
toolbar = EnvToolbar(self, env, canvas)
for w in [canvas, toolbar]:
w.pack(side="bottom", fill="x", padx="3", pady="3")
class EnvToolbar (tk.Frame, object):
def __init__ (self, parent, env, canvas):
super(EnvToolbar, self).__init__(parent, relief='raised', bd=2)
# Initialize instance variables
self.env = env
self.canvas = canvas
self.running = False
self.speed = 1.0
# Create buttons and other controls
for txt, cmd in [('Step >', self.env.step), ('Run >>', self.run),
('Stop [ ]', self.stop),
('List objects', self.list_objects),
('List agents', self.list_agents)]:
tk.Button(self, text=txt, command=cmd).pack(side='left')
tk.Label(self, text='Speed').pack(side='left')
scale = tk.Scale(self, orient='h',
from_=(1.0), to=10.0, resolution=1.0,
command=self.set_speed)
scale.set(self.speed)
scale.pack(side='left')
def run(self):
print 'run'
self.running = True
self.background_run()
def stop(self):
print 'stop'
self.running = False
def background_run(self):
if self.running:
self.env.step()
# ms = int(1000 * max(float(self.speed), 0.5))
#ms = max(int(1000 * float(self.delay)), 1)
delay_sec = 1.0 / max(self.speed, 1.0) # avoid division by zero
ms = int(1000.0 * delay_sec) # seconds to milliseconds
self.after(ms, self.background_run)
def list_objects (self):
print "Objects in the environment:"
for obj in self.env.objects:
print "%s at %s" % (obj, obj.location)
def list_agents (self):
print "Agents in the environment:"
for agt in self.env.agents:
print "%s at %s" % (agt, agt.location)
def set_speed (self, speed):
self.speed = float(speed)
class EnvCanvas (tk.Canvas, object):
def __init__ (self, parent, env, cellwidth, n):
canvwidth = cellwidth * n # (cellwidth + 1 ) * n
canvheight = cellwidth * n # (cellwidth + 1) * n
super(EnvCanvas, self).__init__(parent, background="white",
width=canvwidth, height=canvheight)
# Initialize instance variables
self.env = env
self.cellwidth = cellwidth
self.n = n
# Draw the gridlines
if cellwidth: # Pointless!
for i in range(0, n+1):
self.create_line(0, i*cellwidth, n*cellwidth, i*cellwidth)
self.create_line(i*cellwidth, 0, i*cellwidth, n*cellwidth)
self.pack(expand=1, fill='both') # Shouldn't be? after loop?
self.pack() # Ditto
# Set up object_icon dictionary.
# Each object has an icon mapped in the object_icon dictionary.
# The icon may be a Tk image or any other canvas item,
# typically a "text" if no image is found.
self.object_icon = {}
# Set up image dictionary.
# An image is associated with an image file; multiple objects of the
# same kind use the same image.
# Ugly hack: we need to keep a reference to each ImageTk.PhotoImage,
# or it will be garbage collected. This dictionary maps image files
# that have been opened to their PhotoImage objects
self.images = {}
# Bind canvas events.
self.bind('<Button-1>', self.show_object_state)
#self.bind('<Button-2>', self.user_edit_objects)
self.bind('<Button-3>', self.user_add_object)
# Draw existing objects
for obj in env.objects:
self.object_added(obj)
# Observe future new objects and object moves
env.add_observer(self)
def add_object_icon (self, obj):
"""Return a drawable representation for a newly added object obj.
If obj's class has an image file, use the image from that.
Otherwise create a canvas text item.
Store the icon in the object_icon dictionary and re-use
as needed."""
cell = obj.location
xy = self.cell_topleft(cell)
# Look for an image file
try:
tk_image = self.get_image(obj.get_image_file())
icon = self.create_image(xy, anchor="nw", image=tk_image)
except NoImageException:
# Last resort: create a canvas text icon
icon = self.create_text(xy, anchor="nw", justify="left",
# Abbreviate class name to fit cell
text=obj.__class__.__name__[0:6]
# , fill = ?
#, font = ?
)
# Store and return the icon
self.object_icon[obj] = icon
return icon
def get_image (self, file):
"""Try to find the image in the images dictionary.
If it's not there, open the file and create it, and stick
it in the dictionary. Return the image in a form usable
by the canvas."""
if self.images.has_key(file):
tk_image = self.images[file]
else:
pil_image = Image.open(file)
tk_image = ImageTk.PhotoImage(pil_image)
self.images[file] = tk_image
return tk_image
def show_object_state (self, event):
"""Display the state of the selected object, which may be an agent."""
cell = self.event_cell(event)
objs = self.env.list_objects_at(cell)
n = len(objs)
for o in objs:
o.show_state()
def user_edit_objects(self, event):
"""Choose an object within radius and edit its fields."""
pass
def user_add_object(self, event):
"""Pops up a menu of Object classes; you choose the
one you want to put in this square."""
cell = self.event_cell(event)
xy = self.cell_topleft(cell)
menu = tk.Menu(self, title='Add object at (%d, %d)' % cell)
# Generalize object classes available,
# and why is self.run the command?
#for (txt, cmd) in [('Wumpus', self.run), ('Pit', self.run)]:
# menu.add_command(label=txt, command=cmd)
obj_classes = self.env.object_classes()
def class_cmd (oclass):
def cmd ():
obj = oclass()
self.env.add_object(obj, cell)
return cmd
for oclass in obj_classes:
menu.add_command(label=oclass.__name__,
command=class_cmd(oclass))
menu.tk_popup(event.x + self.winfo_rootx(),
event.y + self.winfo_rooty())
def object_added (self, obj):
# Assert obj exists in the environment but has no icon yet
self.add_object_icon(obj)
def object_moved (self, obj):
# Assert obj exists and has an icon already
icon = self.object_icon[obj]
self.coords(icon, self.cell_topleft(obj.location))
def object_deleted (self, obj):
icon = self.object_icon[obj]
del self.object_icon[obj]
self.delete(icon)
def event_cell (self, event):
return self.xy_cell((event.x, event.y))
def xy_cell (self, (x, y)):
"""Given an (x, y) on the canvas, return the row and column
of the cell containing it."""
w = self.cellwidth
return x / w, y / w
def cell_topleft (self, (row, column)):
"""Given a (row, column) tuple, return the (x, y) coordinates
of the cell(row, column)'s top left corner."""
w = self.cellwidth
return w * row, w * column
class NoImageException (Exception): pass
def test_gui ():
v = VacuumEnvironment()
w = EnvGUI(v)
a = TraceAgent(RandomAgent(['Forward',
'TurnRight',
'TurnLeft',
# omit grab because grabbing is
# is not implemented correctly.
#'Grab',
'Suck']))
a.heading = (1, 0) # east?
v.add_object(Dirt(), (6, 6))
v.add_object(Dirt(), (3, 2))
v.add_object(Dirt(), (5, 7))
v.add_object(a, (6, 6))
w.mainloop()
# test_gui()