forked from hcc11/SpatialNeuronNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSimulationFig5.m
190 lines (152 loc) · 5.23 KB
/
SimulationFig5.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
% codes for the neural field model in Fig 5A & B,C left
%% Fig. 5A
% provides wavenumber containing max real lam > 0 againt tau, sigma changes
clear
data_folder='data/';
fnamesave=[data_folder 'neuralfield_stability'];
efit = @(mu)(mu.^2 .* (mu > 0));
ifit = @(mu)(mu.^2 .* (mu > 0));
Ne = 10000;
Ni = 10000;
Jee = 1;
Jei = -2;
Jie = 1.5;
Jii = -2.5;
pee = .008;
pei = .008;
pie = .008;
pii = .008;
KeeIn=pee*Ne;
KeiIn=(pei*Ni)*Ni/Ne;
KieIn=(pie*Ne)*Ne/Ni;
KiiIn=pii*Ni;
wee0=KeeIn*Jee;
wei0=KeiIn*Jei;
wie0=KieIn*Jie;
wii0=KiiIn*Jii;
W0 = [wee0 wei0;wie0 wii0];
Fin = [0.48 0.32]; % external inputs for [mu_e, mu_i]
reg = .012; % initial condition for firing rate re (kHz)
rig = .010; % initial condition for firing rate ri (kHz)
taue=5; % (ms)
taui=5;
sigmae=.1; % spatial connection width
sigmai=.1;
mu_i_range=[.32 .5]; % .32 for Unatt., .5 for Att. condition
for ss=1:2
Fin(2) = mu_i_range(ss);
% find steady state for rates
q = .05;
eps = 1e-6;
change = 1;
iter = 1;
while (change > q*eps)
ue = Fin(1) + wee0*reg + wei0*rig; % total current to e
ui = Fin(2) + wie0*reg + wii0*rig; % total current to i
renext = efit(ue);
rinext = ifit(ui);
changee = abs(renext-reg)/reg;
changei = abs(rinext-rig)/rig;
change = abs(changee + changei)/2;
reg = (1-q)*reg + q*renext;
rig = (1-q)*rig + q*rinext;
iter = iter+1;
if (iter > 50000)
change = 0;
end
end
% Calculate eigenvalues
sigmai_use = .05:(.00125/2):.2;
taui_use = 2.5:(.125/4):25;
maxreallamplot=zeros(numel(sigmai_use),numel(taui_use));
maxreallamindex=zeros(numel(sigmai_use),numel(taui_use));
Fmodes=0:1:5;
[f1,f2]=meshgrid(Fmodes,Fmodes);
wavenums=sqrt(sort(unique(f1.^2+f2.^2)));
for i = 1:numel(sigmai_use)
for j = 1:numel(taui_use)
maxreallam = zeros(1,numel(wavenums)); % eigenvalue w/ larger real part for each wave number
% Fourier coefficients of W's, wn: wave number
weet=@(wn)(wee0*exp(-2*wn.^2*pi^2*sigmae^2));
weit=@(wn)(wei0*exp(-2*wn.^2*pi^2*sigmai_use(i)^2));
wiet=@(wn)(wie0*exp(-2*wn.^2*pi^2*sigmae^2));
wiit=@(wn)(wii0*exp(-2*wn.^2*pi^2*sigmai_use(i)^2));
Wt=@(wn)([weet(wn) weit(wn); wiet(wn) wiit(wn)]);
Tau_e = taue;
Tau_i = taui_use(j);
Tau = [-1/Tau_e 0; 0 -1/Tau_i];
ge = 2*ue;
gi = 2*ui;
GTau=[ge/Tau_e 0; 0 gi/Tau_i];
for k=1:numel(wavenums)
Matrix = Tau + GTau*Wt(wavenums(k));
maxreallam(k)=max(real(eig(Matrix)));
end
[maxreallamplot(i,j),maxreallamindex(i,j)] = max(real(maxreallam));
end
end
maxReWavNum = maxreallamindex.*(maxreallamplot>=0); % 0 for negative eigenvalues
maxReWavNum(maxReWavNum==0) = maxReWavNum(maxReWavNum==0) -1; % convert from index to wn, -1 for negative eigenvalues
maxReWavNum(maxReWavNum>0) = wavenums(maxReWavNum(maxReWavNum>0)); % convert from index to wn
res(ss).maxReWavNum=maxReWavNum;
res(ss).muI=Fin(2);
end
save(fnamesave,'res','sigmai_use','taui_use','wavenums','taue','Fin')
%% Fig. 5B,C left
% eigenval (max real) vs wn, for various taui
fnamesave=[data_folder 'neuralfield_Lambda'];
Fin = [0.48 0.32];
reg = .012;
rig = .010;
taue=5;
taui_use = 5:2.5:15;
sigmae=.1;
ss=0;
for sigmai=[.1 .15]
ss=ss+1;
weet=@(wn)(wee0*exp(-2*wn.^2*pi^2*sigmae^2));
weit=@(wn)(wei0*exp(-2*wn.^2*pi^2*sigmai^2));
wiet=@(wn)(wie0*exp(-2*wn.^2*pi^2*sigmae^2));
wiit=@(wn)(wii0*exp(-2*wn.^2*pi^2*sigmai^2));
Wt=@(wn)([weet(wn) weit(wn); wiet(wn) wiit(wn)]);
% find steady state for rates
q = .05;
eps = 1e-6;
change = 1;
iter = 1;
while (change > q*eps)
ue = Fin(1) + wee0*reg + wei0*rig;
ui = Fin(2) + wie0*reg + wii0*rig;
renext = efit(ue);
rinext = ifit(ui);
changee = abs(renext-reg)/reg;
changei = abs(rinext-rig)/rig;
change = abs(changee + changei)/2;
reg = (1-q)*reg + q*renext;
rig = (1-q)*rig + q*rinext;
iter = iter+1;
if (iter > 50000)
change = 0;
end
end
% Calculate eigenvalues
Fmodes=0:1:5;
[f1,f2]=meshgrid(Fmodes,Fmodes);
wavenums=sqrt(sort(unique(f1.^2+f2.^2)));
maxreallam=zeros(numel(taui_use),numel(wavenums));
for j = 1:1:numel(taui_use)
Tau_e = taue;
Tau_i = taui_use(j);
Tau = [-1/Tau_e 0; 0 -1/Tau_i];
ge = 2*ue;
gi = 2*ui;
GTau=[ge/Tau_e 0; 0 gi/Tau_i];
for k=1:numel(wavenums)
Matrix = Tau + GTau*Wt(wavenums(k));
maxreallam(j,k)=max(real(eig(Matrix)));
end % k loop
end % j loop
Lambdas(ss).sigmai=sigmai;
Lambdas(ss).maxreallam=maxreallam;
end
save(fnamesave,'Lambdas','wavenums','taui_use','taue','sigmae','Fin')