forked from lorenlugosch/pytorch_HMM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
30 lines (23 loc) · 827 Bytes
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
import torch
from models import HMM
from data import get_datasets, read_config
from training import Trainer
# Generate datasets from text file
path = "data"
N = 128
config = read_config(N,path)
train_dataset, valid_dataset = get_datasets(config)
checkpoint_path = "."
# Initialize model
model = HMM(config=config)
# Train the model
num_epochs = 10
trainer = Trainer(model, config, lr=0.003)
trainer.load_checkpoint(checkpoint_path)
for epoch in range(num_epochs):
print("========= Epoch %d of %d =========" % (epoch+1, num_epochs))
train_loss = trainer.train(train_dataset)
valid_loss = trainer.test(valid_dataset)
trainer.save_checkpoint(epoch, checkpoint_path)
print("========= Results: epoch %d of %d =========" % (epoch+1, num_epochs))
print("train loss: %.2f| valid loss: %.2f\n" % (train_loss, valid_loss) )