forked from KaiyangZhou/Dassl.pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathentmin.py
41 lines (28 loc) · 1.13 KB
/
entmin.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import torch
from torch.nn import functional as F
from dassl.engine import TRAINER_REGISTRY, TrainerXU
from dassl.metrics import compute_accuracy
@TRAINER_REGISTRY.register()
class EntMin(TrainerXU):
"""Entropy Minimization.
http://papers.nips.cc/paper/2740-semi-supervised-learning-by-entropy-minimization.pdf.
"""
def __init__(self, cfg):
super().__init__(cfg)
self.lmda = cfg.TRAINER.ENTMIN.LMDA
def forward_backward(self, batch_x, batch_u):
input_x, label_x, input_u = self.parse_batch_train(batch_x, batch_u)
output_x = self.model(input_x)
loss_x = F.cross_entropy(output_x, label_x)
output_u = F.softmax(self.model(input_u), 1)
loss_u = (-output_u * torch.log(output_u + 1e-5)).sum(1).mean()
loss = loss_x + loss_u * self.lmda
self.model_backward_and_update(loss)
loss_summary = {
"loss_x": loss_x.item(),
"acc_x": compute_accuracy(output_x, label_x)[0].item(),
"loss_u": loss_u.item(),
}
if (self.batch_idx + 1) == self.num_batches:
self.update_lr()
return loss_summary