-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
738 lines (629 loc) · 30.2 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
#!/usr/bin/env python3 -u
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
"""
Train a new model on one or across multiple GPUs.
"""
import argparse
import logging
import math
import os
import sys
from tkinter import N
from typing import Any, Callable, Dict, List, Optional, Tuple
# We need to setup root logger before importing any fairseq libraries.
logging.basicConfig(
format="%(asctime)s | %(levelname)s | %(name)s | %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
level=os.environ.get("LOGLEVEL", "INFO").upper(),
stream=sys.stdout,
)
logger = logging.getLogger("fairseq_cli.train")
import numpy as np
import torch
from omegaconf import DictConfig, OmegaConf
from fairseq import checkpoint_utils, options, quantization_utils, tasks, utils
from fairseq.data import data_utils, iterators
from fairseq.data.plasma_utils import PlasmaStore
from fairseq.dataclass.configs import FairseqConfig
from fairseq.dataclass.initialize import add_defaults
from fairseq.dataclass.utils import convert_namespace_to_omegaconf
from fairseq.distributed import fsdp_enable_wrap, fsdp_wrap
from fairseq.distributed import utils as distributed_utils
from fairseq.file_io import PathManager
from fairseq.logging import meters, metrics, progress_bar
from fairseq.model_parallel.megatron_trainer import MegatronTrainer
from fairseq.trainer import Trainer
import torch.nn.utils.prune as prune
def pruning_bert(model, px, model_type='wav2vec_small'):
"""
prune out wav2vec 2.0 BERT: 12 transformer layers for BASE, and 24
transformer layers for LARGE
note: position encoding, projection heads, layernorm statistics are not pruned.
"""
if model_type == 'wav2vec_small':
num_transformer_blocks = 12
elif model_type == 'libri960_big' or model_type == 'xlsr_53_56k':
num_transformer_blocks = 24
else:
print('model type {} not supported'.format(model_type))
# print('num_transformer_blocks is', num_transformer_blocks)
parameters_to_prune =[]
for ii in range(num_transformer_blocks):
parameters_to_prune.append((model.w2v_encoder.w2v_model.encoder.layers[ii].self_attn.k_proj, 'weight'))
parameters_to_prune.append((model.w2v_encoder.w2v_model.encoder.layers[ii].self_attn.k_proj, 'bias'))
parameters_to_prune.append((model.w2v_encoder.w2v_model.encoder.layers[ii].self_attn.v_proj, 'weight'))
parameters_to_prune.append((model.w2v_encoder.w2v_model.encoder.layers[ii].self_attn.v_proj, 'bias'))
parameters_to_prune.append((model.w2v_encoder.w2v_model.encoder.layers[ii].self_attn.q_proj, 'weight'))
parameters_to_prune.append((model.w2v_encoder.w2v_model.encoder.layers[ii].self_attn.q_proj, 'bias'))
parameters_to_prune.append((model.w2v_encoder.w2v_model.encoder.layers[ii].self_attn.out_proj, 'weight'))
parameters_to_prune.append((model.w2v_encoder.w2v_model.encoder.layers[ii].self_attn.out_proj, 'bias'))
parameters_to_prune.append((model.w2v_encoder.w2v_model.encoder.layers[ii].fc1, 'weight'))
parameters_to_prune.append((model.w2v_encoder.w2v_model.encoder.layers[ii].fc1, 'bias'))
parameters_to_prune.append((model.w2v_encoder.w2v_model.encoder.layers[ii].fc2, 'weight'))
parameters_to_prune.append((model.w2v_encoder.w2v_model.encoder.layers[ii].fc2, 'bias'))
parameters_to_prune = tuple(parameters_to_prune)
prune.global_unstructured(
parameters_to_prune,
pruning_method=prune.L1Unstructured,
amount=px,
)
def unprune_bert(model, model_type='libri960_big'):
"""
remove pruning forward pre-hook. This is useful when we want to tweek the learned pruned mask, which is used in PARP.
"""
if model_type == 'wav2vec_small':
num_transformer_blocks = 12
elif model_type == 'libri960_big' or model_type == 'xlsr_53_56k':
num_transformer_blocks = 24
else:
print('model type {} not supported'.format(model_type))
# print('num_transformer_blocks is', num_transformer_blocks)
parameters_to_prune =[]
for ii in range(num_transformer_blocks):
parameters_to_prune.append(model.w2v_encoder.w2v_model.encoder.layers[ii].self_attn.k_proj)
parameters_to_prune.append(model.w2v_encoder.w2v_model.encoder.layers[ii].self_attn.v_proj)
parameters_to_prune.append(model.w2v_encoder.w2v_model.encoder.layers[ii].self_attn.q_proj)
parameters_to_prune.append(model.w2v_encoder.w2v_model.encoder.layers[ii].self_attn.out_proj)
parameters_to_prune.append(model.w2v_encoder.w2v_model.encoder.layers[ii].fc1)
parameters_to_prune.append(model.w2v_encoder.w2v_model.encoder.layers[ii].fc2)
for ii in range(0, len(parameters_to_prune)): # applying both weight+bias masks
prune.remove(parameters_to_prune[ii], 'weight')
prune.remove(parameters_to_prune[ii], 'bias')
def see_weight_rate(model, model_type='wav2vec_small'):
""" check a model's zero rate
"""
if model_type == 'wav2vec_small':
num_transformer_blocks = 12
elif model_type == 'libri960_big' or model_type == 'xlsr_53_56k':
num_transformer_blocks = 24
else:
print('model type {} not supported'.format(model_type))
# print('num_transformer_blocks is', num_transformer_blocks)
sum_list_2, zero_sum_2 = 0, 0
for ii in range(num_transformer_blocks):
sum_list_2 = sum_list_2 + float(model.w2v_encoder.w2v_model.encoder.layers[ii].self_attn.k_proj.weight.nelement())
zero_sum_2 = zero_sum_2 + float(torch.sum(model.w2v_encoder.w2v_model.encoder.layers[ii].self_attn.k_proj.weight == 0))
sum_list_2 = sum_list_2 + float(model.w2v_encoder.w2v_model.encoder.layers[ii].self_attn.k_proj.bias.nelement())
zero_sum_2 = zero_sum_2 + float(torch.sum(model.w2v_encoder.w2v_model.encoder.layers[ii].self_attn.k_proj.bias == 0))
sum_list_2 = sum_list_2 + float(model.w2v_encoder.w2v_model.encoder.layers[ii].self_attn.v_proj.weight.nelement())
zero_sum_2 = zero_sum_2 + float(torch.sum(model.w2v_encoder.w2v_model.encoder.layers[ii].self_attn.v_proj.weight == 0))
sum_list_2 = sum_list_2 + float(model.w2v_encoder.w2v_model.encoder.layers[ii].self_attn.v_proj.bias.nelement())
zero_sum_2 = zero_sum_2 + float(torch.sum(model.w2v_encoder.w2v_model.encoder.layers[ii].self_attn.v_proj.bias == 0))
sum_list_2 = sum_list_2 + float(model.w2v_encoder.w2v_model.encoder.layers[ii].self_attn.q_proj.weight.nelement())
zero_sum_2 = zero_sum_2 + float(torch.sum(model.w2v_encoder.w2v_model.encoder.layers[ii].self_attn.q_proj.weight == 0))
sum_list_2 = sum_list_2 + float(model.w2v_encoder.w2v_model.encoder.layers[ii].self_attn.q_proj.bias.nelement())
zero_sum_2 = zero_sum_2 + float(torch.sum(model.w2v_encoder.w2v_model.encoder.layers[ii].self_attn.q_proj.bias == 0))
sum_list_2 = sum_list_2 + float(model.w2v_encoder.w2v_model.encoder.layers[ii].self_attn.out_proj.weight.nelement())
zero_sum_2 = zero_sum_2 + float(torch.sum(model.w2v_encoder.w2v_model.encoder.layers[ii].self_attn.out_proj.weight == 0))
sum_list_2 = sum_list_2 + float(model.w2v_encoder.w2v_model.encoder.layers[ii].self_attn.out_proj.bias.nelement())
zero_sum_2 = zero_sum_2 + float(torch.sum(model.w2v_encoder.w2v_model.encoder.layers[ii].self_attn.out_proj.bias == 0))
sum_list_2 = sum_list_2 + float(model.w2v_encoder.w2v_model.encoder.layers[ii].fc1.weight.nelement())
zero_sum_2 = zero_sum_2 + float(torch.sum(model.w2v_encoder.w2v_model.encoder.layers[ii].fc1.weight == 0))
sum_list_2 = sum_list_2 + float(model.w2v_encoder.w2v_model.encoder.layers[ii].fc1.bias.nelement())
zero_sum_2 = zero_sum_2 + float(torch.sum(model.w2v_encoder.w2v_model.encoder.layers[ii].fc1.bias == 0))
sum_list_2 = sum_list_2 + float(model.w2v_encoder.w2v_model.encoder.layers[ii].fc2.weight.nelement())
zero_sum_2 = zero_sum_2 + float(torch.sum(model.w2v_encoder.w2v_model.encoder.layers[ii].fc2.weight == 0))
sum_list_2 = sum_list_2 + float(model.w2v_encoder.w2v_model.encoder.layers[ii].fc2.bias.nelement())
zero_sum_2 = zero_sum_2 + float(torch.sum(model.w2v_encoder.w2v_model.encoder.layers[ii].fc2.bias == 0))
bert_zero_rate = 100 * zero_sum_2 / sum_list_2
# print('BERT zero rate is {0:.2f}'.format(bert_zero_rate))
return bert_zero_rate
def apply_pruning_mask(model, mask_dict, model_type='libri960_big'):
"""
apply existing pruning mask to a pre-trained wav2vec 2.0.
"""
if model_type == 'wav2vec_small':
num_transformer_blocks = 12
elif model_type == 'libri960_big' or model_type == 'xlsr_53_56k':
num_transformer_blocks = 24
else:
print('model type {} not supported'.format(model_type))
print('num_transformer_blocks is', num_transformer_blocks)
parameters_to_prune =[]
mask_list_w, mask_list_b = [], [] # maks list for weight and bias
for ii in range(num_transformer_blocks):
parameters_to_prune.append(model.w2v_encoder.w2v_model.encoder.layers[ii].self_attn.k_proj)
mask_list_w.append(mask_dict['w2v_encoder.w2v_model.encoder.layers.' + str(ii) + '.self_attn.k_proj.weight_mask'])
mask_list_b.append(mask_dict['w2v_encoder.w2v_model.encoder.layers.' + str(ii) + '.self_attn.k_proj.bias_mask'])
parameters_to_prune.append(model.w2v_encoder.w2v_model.encoder.layers[ii].self_attn.v_proj)
mask_list_w.append(mask_dict['w2v_encoder.w2v_model.encoder.layers.' + str(ii) + '.self_attn.v_proj.weight_mask'])
mask_list_b.append(mask_dict['w2v_encoder.w2v_model.encoder.layers.' + str(ii) + '.self_attn.v_proj.bias_mask'])
parameters_to_prune.append(model.w2v_encoder.w2v_model.encoder.layers[ii].self_attn.q_proj)
mask_list_w.append(mask_dict['w2v_encoder.w2v_model.encoder.layers.' + str(ii) + '.self_attn.q_proj.weight_mask'])
mask_list_b.append(mask_dict['w2v_encoder.w2v_model.encoder.layers.' + str(ii) + '.self_attn.q_proj.bias_mask'])
parameters_to_prune.append(model.w2v_encoder.w2v_model.encoder.layers[ii].self_attn.out_proj)
mask_list_w.append(mask_dict['w2v_encoder.w2v_model.encoder.layers.' + str(ii) + '.self_attn.out_proj.weight_mask'])
mask_list_b.append(mask_dict['w2v_encoder.w2v_model.encoder.layers.' + str(ii) + '.self_attn.out_proj.bias_mask'])
parameters_to_prune.append(model.w2v_encoder.w2v_model.encoder.layers[ii].fc1)
mask_list_w.append(mask_dict['w2v_encoder.w2v_model.encoder.layers.' + str(ii) + '.fc1.weight_mask'])
mask_list_b.append(mask_dict['w2v_encoder.w2v_model.encoder.layers.' + str(ii) + '.fc1.bias_mask'])
parameters_to_prune.append(model.w2v_encoder.w2v_model.encoder.layers[ii].fc2)
mask_list_w.append(mask_dict['w2v_encoder.w2v_model.encoder.layers.' + str(ii) + '.fc2.weight_mask'])
mask_list_b.append(mask_dict['w2v_encoder.w2v_model.encoder.layers.' + str(ii) + '.fc2.bias_mask'])
for ii in range(0, len(parameters_to_prune)): # applying both weight+bias masks
prune.CustomFromMask.apply(parameters_to_prune[ii], 'weight', mask=mask_list_w[ii])
prune.CustomFromMask.apply(parameters_to_prune[ii], 'bias', mask=mask_list_b[ii])
prune.remove(parameters_to_prune[ii], 'weight')
prune.remove(parameters_to_prune[ii], 'bias')
def main(cfg: FairseqConfig) -> None:
if isinstance(cfg, argparse.Namespace):
cfg = convert_namespace_to_omegaconf(cfg)
utils.import_user_module(cfg.common)
add_defaults(cfg)
if (
distributed_utils.is_master(cfg.distributed_training)
and "job_logging_cfg" in cfg
):
# make hydra logging work with ddp (see # see https://github.com/facebookresearch/hydra/issues/1126)
logging.config.dictConfig(OmegaConf.to_container(cfg.job_logging_cfg))
assert (
cfg.dataset.max_tokens is not None or cfg.dataset.batch_size is not None
), "Must specify batch size either with --max-tokens or --batch-size"
metrics.reset()
if cfg.common.log_file is not None:
handler = logging.FileHandler(filename=cfg.common.log_file)
logger.addHandler(handler)
np.random.seed(cfg.common.seed)
utils.set_torch_seed(cfg.common.seed)
if distributed_utils.is_master(cfg.distributed_training):
checkpoint_utils.verify_checkpoint_directory(cfg.checkpoint.save_dir)
# Print args
logger.info(cfg)
if cfg.checkpoint.write_checkpoints_asynchronously:
try:
import iopath # noqa: F401
except ImportError:
logging.exception(
"Asynchronous checkpoint writing is specified but iopath is "
"not installed: `pip install iopath`"
)
return
# Setup task, e.g., translation, language modeling, etc.
task = tasks.setup_task(cfg.task)
assert cfg.criterion, "Please specify criterion to train a model"
# Build model and criterion
if cfg.distributed_training.ddp_backend == "fully_sharded":
with fsdp_enable_wrap(cfg.distributed_training):
model = fsdp_wrap(task.build_model(cfg.model))
else:
model = task.build_model(cfg.model)
criterion = task.build_criterion(cfg.criterion)
logger.info(model)
# Initial pruning for TAW and CD-TAW
mask_dict = {}
ft_model_state_dict = torch.load('path_to_the_state_dict_carrying_the_mask', map_location='cpu')
for key in ft_model_state_dict.keys():
if 'mask' in key:
mask_dict[key] = ft_model_state_dict[key]
apply_pruning_mask(model, mask_dict)
# Initial pruning for TAG
# a 0.3 prune_rate refers to the pruning percentage of 30%. The least 30% of the weights in terms of magnitude are marked for zeroing out.
prune_rate = 0.3
# Change the model_type to 'wav2vec_small' if you're using a base model of wav2vec2
pruning_bert(trainer.model, prune_rate, model_type='libri960_big')
unprune_bert(trainer.model, model_type='libri960_big')
logger.info("task: {}".format(task.__class__.__name__))
logger.info("model: {}".format(model.__class__.__name__))
logger.info("criterion: {}".format(criterion.__class__.__name__))
logger.info(
"num. shared model params: {:,} (num. trained: {:,})".format(
sum(
p.numel() for p in model.parameters() if not getattr(p, "expert", False)
),
sum(
p.numel()
for p in model.parameters()
if not getattr(p, "expert", False) and p.requires_grad
),
)
)
logger.info(
"num. expert model params: {} (num. trained: {})".format(
sum(p.numel() for p in model.parameters() if getattr(p, "expert", False)),
sum(
p.numel()
for p in model.parameters()
if getattr(p, "expert", False) and p.requires_grad
),
)
)
# Load valid dataset (we load training data below, based on the latest checkpoint)
# We load the valid dataset AFTER building the model
data_utils.raise_if_valid_subsets_unintentionally_ignored(cfg)
if cfg.dataset.combine_valid_subsets:
task.load_dataset("valid", combine=True, epoch=1)
else:
for valid_sub_split in cfg.dataset.valid_subset.split(","):
task.load_dataset(valid_sub_split, combine=False, epoch=1)
# (optionally) Configure quantization
if cfg.common.quantization_config_path is not None:
quantizer = quantization_utils.Quantizer(
config_path=cfg.common.quantization_config_path,
max_epoch=cfg.optimization.max_epoch,
max_update=cfg.optimization.max_update,
)
else:
quantizer = None
# Build trainer
if cfg.common.model_parallel_size == 1:
trainer = Trainer(cfg, task, model, criterion, quantizer)
else:
trainer = MegatronTrainer(cfg, task, model, criterion)
logger.info(
"training on {} devices (GPUs/TPUs)".format(
cfg.distributed_training.distributed_world_size
)
)
logger.info(
"max tokens per device = {} and max sentences per device = {}".format(
cfg.dataset.max_tokens,
cfg.dataset.batch_size,
)
)
# Load the latest checkpoint if one is available and restore the
# corresponding train iterator
extra_state, epoch_itr = checkpoint_utils.load_checkpoint(
cfg.checkpoint,
trainer,
# don't cache epoch iterators for sharded datasets
disable_iterator_cache=task.has_sharded_data("train"),
)
if cfg.common.tpu:
import torch_xla.core.xla_model as xm
xm.rendezvous("load_checkpoint") # wait for all workers
max_epoch = cfg.optimization.max_epoch or math.inf
lr = trainer.get_lr()
train_meter = meters.StopwatchMeter()
train_meter.start()
while epoch_itr.next_epoch_idx <= max_epoch:
if lr <= cfg.optimization.stop_min_lr:
logger.info(
f"stopping training because current learning rate ({lr}) is smaller "
"than or equal to minimum learning rate "
f"(--stop-min-lr={cfg.optimization.stop_min_lr})"
)
break
# train for one epoch
valid_losses, should_stop = train(cfg, trainer, task, epoch_itr)
if should_stop:
break
# only use first validation loss to update the learning rate
lr = trainer.lr_step(epoch_itr.epoch, valid_losses[0])
epoch_itr = trainer.get_train_iterator(
epoch_itr.next_epoch_idx,
# sharded data: get train iterator for next epoch
load_dataset=task.has_sharded_data("train"),
# don't cache epoch iterators for sharded datasets
disable_iterator_cache=task.has_sharded_data("train"),
)
train_meter.stop()
logger.info("done training in {:.1f} seconds".format(train_meter.sum))
# ioPath implementation to wait for all asynchronous file writes to complete.
if cfg.checkpoint.write_checkpoints_asynchronously:
logger.info(
"ioPath PathManager waiting for all asynchronous checkpoint "
"writes to finish."
)
PathManager.async_close()
logger.info("ioPath PathManager finished waiting.")
def should_stop_early(cfg: DictConfig, valid_loss: float) -> bool:
# skip check if no validation was done in the current epoch
if valid_loss is None:
return False
if cfg.checkpoint.patience <= 0:
return False
def is_better(a, b):
return a > b if cfg.checkpoint.maximize_best_checkpoint_metric else a < b
prev_best = getattr(should_stop_early, "best", None)
if prev_best is None or is_better(valid_loss, prev_best):
should_stop_early.best = valid_loss
should_stop_early.num_runs = 0
return False
else:
should_stop_early.num_runs += 1
if should_stop_early.num_runs >= cfg.checkpoint.patience:
logger.info(
"early stop since valid performance hasn't improved for last {} runs".format(
cfg.checkpoint.patience
)
)
return True
else:
return False
# If you're using ONCE prune as the pruning frequncy, change this value to 0
num_prunes = 1
@metrics.aggregate("train")
def train(
cfg: DictConfig, trainer: Trainer, task: tasks.FairseqTask, epoch_itr
) -> Tuple[List[Optional[float]], bool]:
"""Train the model for one epoch and return validation losses."""
# Initialize data iterator
itr = epoch_itr.next_epoch_itr(
fix_batches_to_gpus=cfg.distributed_training.fix_batches_to_gpus,
shuffle=(epoch_itr.next_epoch_idx > cfg.dataset.curriculum),
)
update_freq = (
cfg.optimization.update_freq[epoch_itr.epoch - 1]
if epoch_itr.epoch <= len(cfg.optimization.update_freq)
else cfg.optimization.update_freq[-1]
)
itr = iterators.GroupedIterator(
itr,
update_freq,
skip_remainder_batch=cfg.optimization.skip_remainder_batch,
)
if cfg.common.tpu:
itr = utils.tpu_data_loader(itr)
progress = progress_bar.progress_bar(
itr,
log_format=cfg.common.log_format,
log_file=cfg.common.log_file,
log_interval=cfg.common.log_interval,
epoch=epoch_itr.epoch,
tensorboard_logdir=(
cfg.common.tensorboard_logdir
if distributed_utils.is_master(cfg.distributed_training)
else None
),
default_log_format=("tqdm" if not cfg.common.no_progress_bar else "simple"),
wandb_project=(
cfg.common.wandb_project
if distributed_utils.is_master(cfg.distributed_training)
else None
),
wandb_run_name=os.environ.get(
"WANDB_NAME", os.path.basename(cfg.checkpoint.save_dir)
),
azureml_logging=(
cfg.common.azureml_logging
if distributed_utils.is_master(cfg.distributed_training)
else False
),
)
progress.update_config(_flatten_config(cfg))
trainer.begin_epoch(epoch_itr.epoch)
valid_subsets = cfg.dataset.valid_subset.split(",")
should_stop = False
done_with_epoch = torch.tensor([0]).cuda()
num_updates = trainer.get_num_updates()
logger.info("Start iterating over samples")
for i, samples in enumerate(progress):
with metrics.aggregate("train_inner"), torch.autograd.profiler.record_function(
"train_step-%d" % i
):
log_output = trainer.train_step(samples)
if log_output is not None: # not OOM, overflow, ...
# log mid-epoch stats
num_updates = trainer.get_num_updates()
if num_updates % cfg.common.log_interval == 0:
stats = get_training_stats(metrics.get_smoothed_values("train_inner"))
progress.log(stats, tag="train_inner", step=num_updates)
# reset mid-epoch stats after each log interval
# the end-of-epoch stats will still be preserved
metrics.reset_meters("train_inner")
end_of_epoch = not itr.has_next()
valid_losses, should_stop = validate_and_save(
cfg, trainer, task, epoch_itr, valid_subsets, end_of_epoch
)
if should_stop:
break
# log end-of-epoch stats
logger.info("end of epoch {} (average epoch stats below)".format(epoch_itr.epoch))
stats = get_training_stats(metrics.get_smoothed_values("train"))
progress.print(stats, tag="train", step=num_updates)
done_with_epoch += 1
if cfg.distributed_training.distributed_world_size > 1:
torch.distributed.all_reduce(done_with_epoch)
# Here's where we mention the numbers r_2, r_3, ..., r_k as mentioned in the algorithm of the paper.
r = [0.2, 0.1]
# n as mentioned in the algorithm of the paper
n = 1000
# Change the model_type to 'wav2vec_small' if you're using a base model of wav2vec2
model_type='libri960_big'
if done_with_epoch == cfg.distributed_training.distributed_world_size:
global num_prunes
if abs(num_updates - n*1) < 19 and num_prunes == 1:
num_prunes += 1
pruning_bert(trainer.model, r[0], model_type)
unprune_bert(trainer.model, model_type)
if abs(num_updates - n*2) < 19 and num_prunes == 2:
num_prunes += 1
pruning_bert(trainer.model, r[1], model_type)
unprune_bert(trainer.model, model_type)
# reset epoch-level meters
metrics.reset_meters("train")
return valid_losses, should_stop
def _flatten_config(cfg: DictConfig):
config = OmegaConf.to_container(cfg)
# remove any legacy Namespaces and replace with a single "args"
namespace = None
for k, v in list(config.items()):
if isinstance(v, argparse.Namespace):
namespace = v
del config[k]
if namespace is not None:
config["args"] = vars(namespace)
return config
def validate_and_save(
cfg: DictConfig,
trainer: Trainer,
task: tasks.FairseqTask,
epoch_itr,
valid_subsets: List[str],
end_of_epoch: bool,
) -> Tuple[List[Optional[float]], bool]:
num_updates = trainer.get_num_updates()
max_update = cfg.optimization.max_update or math.inf
# Stopping conditions (and an additional one based on validation loss later
# on)
should_stop = False
if num_updates >= max_update:
should_stop = True
logger.info(
f"Stopping training due to "
f"num_updates: {num_updates} >= max_update: {max_update}"
)
training_time_hours = trainer.cumulative_training_time() / (60 * 60)
if (
cfg.optimization.stop_time_hours > 0
and training_time_hours > cfg.optimization.stop_time_hours
):
should_stop = True
logger.info(
f"Stopping training due to "
f"cumulative_training_time: {training_time_hours} > "
f"stop_time_hours: {cfg.optimization.stop_time_hours} hour(s)"
)
do_save = (
(end_of_epoch and epoch_itr.epoch % cfg.checkpoint.save_interval == 0)
or should_stop
or (
cfg.checkpoint.save_interval_updates > 0
and num_updates > 0
and num_updates % cfg.checkpoint.save_interval_updates == 0
and num_updates >= cfg.dataset.validate_after_updates
)
)
do_validate = (
(
(not end_of_epoch and do_save) # validate during mid-epoch saves
or (end_of_epoch and epoch_itr.epoch % cfg.dataset.validate_interval == 0)
or should_stop
or (
cfg.dataset.validate_interval_updates > 0
and num_updates > 0
and num_updates % cfg.dataset.validate_interval_updates == 0
)
)
and not cfg.dataset.disable_validation
and num_updates >= cfg.dataset.validate_after_updates
)
# Validate
valid_losses = [None]
if do_validate:
valid_losses = validate(cfg, trainer, task, epoch_itr, valid_subsets)
should_stop |= should_stop_early(cfg, valid_losses[0])
# Save checkpoint
if do_save or should_stop:
checkpoint_utils.save_checkpoint(
cfg.checkpoint, trainer, epoch_itr, valid_losses[0]
)
return valid_losses, should_stop
def get_training_stats(stats: Dict[str, Any]) -> Dict[str, Any]:
stats["wall"] = round(metrics.get_meter("default", "wall").elapsed_time, 0)
return stats
def validate(
cfg: DictConfig,
trainer: Trainer,
task: tasks.FairseqTask,
epoch_itr,
subsets: List[str],
) -> List[Optional[float]]:
"""Evaluate the model on the validation set(s) and return the losses."""
if cfg.dataset.fixed_validation_seed is not None:
# set fixed seed for every validation
utils.set_torch_seed(cfg.dataset.fixed_validation_seed)
trainer.begin_valid_epoch(epoch_itr.epoch)
valid_losses = []
for subset in subsets:
logger.info('begin validation on "{}" subset'.format(subset))
# Initialize data iterator
itr = trainer.get_valid_iterator(subset).next_epoch_itr(
shuffle=False, set_dataset_epoch=False # use a fixed valid set
)
if cfg.common.tpu:
itr = utils.tpu_data_loader(itr)
progress = progress_bar.progress_bar(
itr,
log_format=cfg.common.log_format,
log_interval=cfg.common.log_interval,
epoch=epoch_itr.epoch,
prefix=f"valid on '{subset}' subset",
tensorboard_logdir=(
cfg.common.tensorboard_logdir
if distributed_utils.is_master(cfg.distributed_training)
else None
),
default_log_format=("tqdm" if not cfg.common.no_progress_bar else "simple"),
wandb_project=(
cfg.common.wandb_project
if distributed_utils.is_master(cfg.distributed_training)
else None
),
wandb_run_name=os.environ.get(
"WANDB_NAME", os.path.basename(cfg.checkpoint.save_dir)
),
)
# create a new root metrics aggregator so validation metrics
# don't pollute other aggregators (e.g., train meters)
with metrics.aggregate(new_root=True) as agg:
for i, sample in enumerate(progress):
if (
cfg.dataset.max_valid_steps is not None
and i > cfg.dataset.max_valid_steps
):
break
trainer.valid_step(sample)
# log validation stats
stats = get_valid_stats(cfg, trainer, agg.get_smoothed_values())
if hasattr(task, "post_validate"):
task.post_validate(trainer.get_model(), stats, agg)
progress.print(stats, tag=subset, step=trainer.get_num_updates())
valid_losses.append(stats[cfg.checkpoint.best_checkpoint_metric])
return valid_losses
def get_valid_stats(
cfg: DictConfig, trainer: Trainer, stats: Dict[str, Any]
) -> Dict[str, Any]:
stats["num_updates"] = trainer.get_num_updates()
if hasattr(checkpoint_utils.save_checkpoint, "best"):
key = "best_{0}".format(cfg.checkpoint.best_checkpoint_metric)
best_function = max if cfg.checkpoint.maximize_best_checkpoint_metric else min
stats[key] = best_function(
checkpoint_utils.save_checkpoint.best,
stats[cfg.checkpoint.best_checkpoint_metric],
)
return stats
def cli_main(
modify_parser: Optional[Callable[[argparse.ArgumentParser], None]] = None
) -> None:
parser = options.get_training_parser()
args = options.parse_args_and_arch(parser, modify_parser=modify_parser)
cfg = convert_namespace_to_omegaconf(args)
if cfg.common.use_plasma_view:
server = PlasmaStore(path=cfg.common.plasma_path)
logger.info(
f"Started plasma server pid {server.server.pid} {cfg.common.plasma_path}"
)
if args.profile:
with torch.cuda.profiler.profile():
with torch.autograd.profiler.emit_nvtx():
distributed_utils.call_main(cfg, main)
else:
distributed_utils.call_main(cfg, main)
# if cfg.common.use_plasma_view:
# server.server.kill()
if __name__ == "__main__":
cli_main()