-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfusion.py
232 lines (176 loc) · 7.76 KB
/
fusion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
import getDataFromApiSensors
import ontologyStopEvent
import math
import datetime
from matplotlib.pyplot import *
from fastdtw import fastdtw
from math import radians, cos, sin, asin, sqrt
import sys
distanceSeuil = 10
tempsSeuilLissage= 1
def interpolate_polyline(polyline, num_points):
duplicates = []
for i in range(1, len(polyline)):
if np.allclose(polyline[i], polyline[i-1]):
duplicates.append(i)
if duplicates:
polyline = np.delete(polyline, duplicates, axis=0)
tck, u = interp.splprep(polyline.T, s=0)
u = np.linspace(0.0, 1.0, num_points)
return np.column_stack(interp.splev(u, tck))
def haversine(latlon1, latlon2):
"""
Calculate the great circle distance between two points
on the earth (specified in decimal degrees)
"""
lat1 = latlon1[0]
lon1 = latlon1[1]
lat2 = latlon2[0]
lon2 = latlon2[1]
# convert decimal degrees to radians
lon1, lat1, lon2, lat2 = map(radians, [lon1, lat1, lon2, lat2])
# haversine formula
dlon = lon2 - lon1
dlat = lat2 - lat1
a = sin(dlat/2)**2 + cos(lat1) * cos(lat2) * sin(dlon/2)**2
c = 2 * asin(sqrt(a))
# Radius of earth in kilometers is 6371
m = 6371 * c * 1000
return m
def areTimeOverlapped(traj1, traj2) :
if len(traj1) <= 0 or len(traj2) <= 0 :
return False
for i in traj1 :
for j in traj2 :
if i[0] > j[0] and i[0]-j[0] < datetime.timedelta(seconds=2) :
return True
if j[0] > i[0] and j[0]-i[0] < datetime.timedelta(seconds=2) :
return True
return False
def distance(a, b) :
return math.hypot(b[0] - a[0], b[1] - a[1])
def trajectoryDistance(traj1, traj2) :
for i in traj1 :
minTime = datetime.timedelta(seconds=59)
indexTraj2 = -1
for j in range(0, len(traj2)) :
if i[0]>traj2[j][0] :
if i[0]-traj2[j][0] < minTime :
minTime = i[0]-traj2[j][0]
indexTraj2 = j
else :
if traj2[j][0]-i[0] < minTime :
minTime = traj2[j][0]-i[0]
indexTraj2 = j
#TODO sensor specfic selection
if minTime < datetime.timedelta(seconds=2) :
#TODO sum on all traj
print distance(i[1], traj2[indexTraj2][1])
def main(args):
dataDict = getDataFromApiSensors.getData(args[2], args[3], args[4])
fusionList = []
for dk in dataDict.keys() :
dataDict[dk+"LISSAGE"] = dataDict.pop(dk)
#dataDict[dk+"LISSAGE"] = dataDict[dk]
#for dk in dataDict.keys():
#print dk
for id1 in dataDict.keys():
for id2 in dataDict.keys():
if id1!=id2 and dataDict[id1]["trajectory"][0][0] <= dataDict[id2]["trajectory"][0][0]:
if dataDict[id1]["sensor"] == dataDict[id2]["sensor"] or \
( "geolys" in dataDict[id1]["sensor"] and "geolys" in dataDict[id2]["sensor"] ) or \
dataDict[id1]["trajectory"][-1][0] < dataDict[id2]["trajectory"][0][0] or \
dataDict[id2]["trajectory"][-1][0] < dataDict[id1]["trajectory"][0][0]:
continue
print id1, id2
npTime1 = np.array( [k[0] for k in dataDict[id1]["trajectory"] ] )
npTime2 = np.array( [k[0] for k in dataDict[id2]["trajectory"] ] )
npCoord1 = np.array( [k[1] for k in dataDict[id1]["trajectory"] ] )
npCoord2 = np.array( [k[1] for k in dataDict[id2]["trajectory"] ] )
idx1 = 0
idx2 = 0
idy1 = len(dataDict[id1]["trajectory"])
idy2 = len(dataDict[id2]["trajectory"])
if npTime1[0] < npTime2[0] :
idx1 = (np.abs(npTime1-npTime2[0])).argmin()
npTime1 = npTime1[idx1:]
npCoord1 = npCoord1[idx1:]
else :
idx2 = (np.abs(npTime1[0]-npTime2)).argmin()
npTime2 = npTime2[idx2:]
npCoord2 = npCoord2[idx2:]
if npTime1[-1] > npTime2[-1] :
idy1 = (np.abs(npTime1-npTime2[-1])).argmin()
npTime1 = npTime1[:idy1+1]
npCoord1 = npCoord1[:idy1+1]
else :
idy2 = (np.abs(npTime1[-1]-npTime2)).argmin()
npTime2 = npTime2[:idy2+1]
npCoord2 = npCoord2[:idy2+1]
distance, path = fastdtw(npCoord1, npCoord2, dist=haversine)
#distance, path = fastdtw(npCoord1, npCoord2, dist=euclidean)
distance = distance/len(path)
print distance
#print distance, path
if len(path) >=0 and distance < distanceSeuil :
fusionList.append([distance,id1,id2])
fusionList=sorted(fusionList)
toBeFused = []
for f in fusionList :
print f[1], f[2], f[0]
tbf1 = [tbf for tbf in fusionList if f[1] in tbf]
tbf2 = [tbf for tbf in fusionList if f[2] in tbf]
#TODO no cyclic confirmation (A->B, B->C so A->C)
response = raw_input("Proceed with fusion? (y/n)")
if response == "y" :
toBeFused.append(f[1:3])
#print toBeFused
fusionCluster = []
while len(toBeFused)>0:
first, rest = toBeFused[0], toBeFused[1:]
first = set(first)
lf = -1
while len(first)>lf:
lf = len(first)
rest2 = []
for r in rest:
if len(first.intersection(set(r)))>0:
first |= set(r)
else:
rest2.append(r)
rest = rest2
fusionCluster.append(list(first))
toBeFused = rest
#print "plop"
print(fusionCluster)
#print "plop2"
for fc in fusionCluster :
for idTraj in fc[1:] :
dataDict[fc[0]]["trajectory"] = sorted(dataDict[fc[0]]["trajectory"] + dataDict[idTraj]["trajectory"])
#dataDict[fc[0]]["sensor"] = dataDict[fc[0]]["sensor"] + " " + dataDict[idTraj]["sensor"]
dataDict.pop(idTraj)
#fusedTraj = {}
'''
for traj in dataDict :
fusedTraj[traj] = {}
fusedTraj[traj]["trajectory"] = []
fusedTraj[traj]["sensor"] = dataDict[traj]["sensor"]
lastPoint = dataDict[traj]["trajectory"][0]
for point in dataDict[traj]["trajectory"]:
if point[0] - lastPoint[0] > datetime.timedelta(seconds=tempsSeuilLissage):
meanPoint = lastPoint
for p in range(dataDict[traj]["trajectory"].index(lastPoint)+1, dataDict[traj]["trajectory"].index(point)+1):
meanPoint[1][0] += (dataDict[traj]["trajectory"][p][1][0] - lastPoint[1][0])* (dataDict[traj]["trajectory"][p][0] - dataDict[traj]["trajectory"][p-1][0]).total_seconds()
meanPoint[1][1] += (dataDict[traj]["trajectory"][p][1][1]- lastPoint[1][1])* (dataDict[traj]["trajectory"][p][0] - dataDict[traj]["trajectory"][p-1][0]).total_seconds()
meanPoint[0] = point[0] + (point[0]-lastPoint[0])/2
fusedTraj[traj]["trajectory"].append(meanPoint)
lastPoint = point
'''
response = raw_input("SEND TO API? (y/n)")
if response == "y" :
ontologyStopEvent.ontologyPorcessing(dataDict, args[1])
#sendDataToApiOntology.sendData(fusedTraj)
if __name__ == "__main__":
# Someone is launching this directly
print str(sys.argv)
main(sys.argv)