Skip to content

Latest commit

 

History

History
261 lines (169 loc) · 6.93 KB

README.md

File metadata and controls

261 lines (169 loc) · 6.93 KB

Celery/Flask samples : Asynchronous API over Asynchronous task manager

Several full running and autonomous samples of how to build an asynchronous API over an asynchronous job queue system.

Components used over all samples : Celery, Redis, Flask, Flask-RESTPlus, Jobtastic

Python version used : Python 3.6

List of samples

  • Sample #1 : Asynchronous API with Flask and and an asynchronous job manager with Celery/Redis

  • Sample #2 : Asynchronous API swagger documented with Flask and Flask-RESTPlus and an asynchronous job manager with Celery/Redis

Sample #1

Simple example with a simple asynchronous API with Flask (frontend), and an asynchronous job manager with Celery/Redis (backend)

  • Frontend

    • Flask for asynchronous web API restful API
    • Web page for testing API
    • API exposed
      • Call add and mul methods with
        • HTTP GET/POST with a pure json body {a:1, b:3}
        • HTTP POST with a web form
        • HTTP GET with querystring /add?a=1&b=3 /mul?a=1&b=3
      • Retrieve results with HTTP GET with 2 paths variants
        • generic : /task/<task_id>
        • method dependent : /task/add/<task_id> /task/mul/<task_id>
  • Backend

    • Celery
    • Celery Broker : Redis
    • Celery Result Storage : Redis

Components version

Quickstart for sample #1

./do.sh install redis --redis=auto
./do.sh install sample1
./do.sh start redis --redis=auto:6379
./do.sh start-back sample1 --redis=auto:6379
./do.sh start-front sample1 --port=8010 --redis=auto:6379

# launch optional celery monitoring UI :
./do.sh start-flower sample1 --port=8011
  • Test with webpage http://localhost:8010/

  • Call methods with HTTP GET with querystring http://localhost:8010/add?a=1&b=2 http://localhost:8010/mul?a=1&b=2 Save the task_id printed

  • Get result with HTTP GET For any task : http://localhost:8010/task/<task_id> For add task only : http://localhost:8010/task/add/<task_id> For mul task only : http://localhost:8010/task/mul/<task_id>

  • Monitor celery tasks with Flower http://localhost:8011

Sample #2

Simple example with a simple asynchronous API with Flask and Flask-RESTPlus (frontend) an asynchronous job manager with Celery/Redis (backend)

API is documented with swagger.

  • Frontend

    • Flask for asynchronous web API restful API
    • Flask-RESTPlus for rest API and swagger support in Flask
    • Web page for testing API
    • API described with swagger /api
    • API exposed
      • Call add and mul methods with
        • HTTP GET with querystring /api/math/add?a=1&b=3 /api/math/mul?a=1&b=3
        • HTTP POST with a pure json body {a:1, b:3}
      • Retrieve jobs status with HTTP GET
        • /api/math/jobs/status/<task_id>
      • Retrieve results with HTTP GET
        • /api/math/jobs/result/<task_id>
      • Delete results with HTTP DELETE
        • /api/math/jobs/result/<task_id>
  • Backend

    • Celery
    • Celery Broker : Redis
    • Celery Result Storage : Redis

Components version

Quickstart for sample #2

./do.sh install redis --redis=auto
./do.sh install sample2
./do.sh start redis --redis=auto:6379
./do.sh start-back sample2 --redis=auto:6379
./do.sh start-front sample2 --port=8020 --redis=auto:6379

# launch optional celery monitoring UI :
./do.sh start-flower sample2 --port=8021
  • Swagger http://localhost:8020/api

  • Test with webpage http://localhost:8020/web

  • Call methods with HTTP GET with querystring http://localhost:8020/api/math/add?a=1&b=2 http://localhost:8020/api/math/mul?a=1&b=2 Save the task_id printed

  • Get job status with HTTP GET http://localhost:8020/api/math/jobs/status/<task_id>

  • Get job result with HTTP GET http://localhost:8020/api/math/jobs/result/<task_id>

  • Delete job result with HTTP DELETE http://localhost:8020/api/math/jobs/result/<task_id>

  • Monitor celery tasks with Flower http://localhost:8021

Full how-to use

Help

./do.sh -h

Redis

All the samples use redis. You could choose between 3 types of redis instance.

Use --redis option value according to :

  • with an auto deployed redis -- use auto -- Redis version : 4.0.8
  • with your own redis -- use host:port
  • with redis inside a docker -- use docker
  • with redis inside a docker-machine -- use docker

NOTE : you dont need to start/stop redis for every sample. Only one redis instance is needed. We store data in different database inside redis

Asynchronous tasks exposed on all samples

These methods are exposed through all samples via an API

  • add(a,b) : add 2 numbers

  • mul(a,b) : multiply 2 numbers

Install a sample

./do.sh install <id-sample>

Install redis

./do.sh install redis [ --redis=auto|docker ]

Run a sample

  • First : start redis
./do.sh start redis [ --redis=auto[:<port>]|docker[:<port>] ]
  • Second : start backend
./do.sh start-back <id-sample> [--redis=auto[:<port>]|docker[:<port>]|<host[:port]>]
  • Third : start frontend
./do.sh start-front <id-sample> [--port=<port>] [--redis=auto[:<port>]|docker[:<port>]|<host[:port]>]

Stop a sample

  • First : stop frontend
./do.sh stop-front <id-sample>
  • Second : stop redis
./do.sh stop redis [ --redis=auto[:<port>]|docker ]
  • Third : stop backend
./do.sh stop-back <id-sample>

Inspirations