📄 Report • 🤗 HF Repo • 🤖 ModelScope • 🟣 WiseModel • 🐦 Twitter • 👋 Join Discord and WeChat
📍Experience and use a larger-scale GLM business model on the Zhipu AI Open Platform
- 🔥🔥 News:
2024/11/01
: Dependencies have been updated in this repository. Please update the dependencies inrequirements.txt
to ensure the model runs correctly. The model weights for glm-4-9b-chat-hf are compatible withtransformers>=4.46.2
and can be implemented using theGlmModel
class in thetransformers
library. Additionally,tokenizer_chatglm.py
in glm-4-9b-chat and glm-4v-9b has been updated for the latest version oftransformers
. Please update the files on HuggingFace. - 🔥 News:
2024/10/27
: We have open-sourced LongReward, a model that uses AI feedback to enhance long-context large language models. - 🔥 News:
2024/10/25
: We have open-sourced the end-to-end Mandarin-English voice dialogue model GLM-4-Voice. - 🔥 News:
2024/09/05
: We have open-sourced longcite-glm4-9b, a model enabling LLMs to produce fine-grained citations in long-context Q&A, along with the dataset LongCite-45k. Try it out online at Huggingface Space. - 🔥 News:
2024/08/15
: We have open-sourced longwriter-glm4-9b, a model capable of generating over 10,000 tokens in single-turn dialogue, along with the dataset LongWriter-6k. Experience it online at Huggingface Space or the ModelScope Community Space. - 🔥 News:
2024/07/24
: We published the latest technical insights on long-text processing. Check out our technical report on training the open-source GLM-4-9B model for long texts here. - 🔥 News:
2024/07/09
: The GLM-4-9B-Chat model is now compatible with Ollama and Llama.cpp. See detailed information in this PR. - 🔥 News:
2024/06/18
: We have released a technical report, available for viewing. - 🔥 News:
2024/06/05
: We released the GLM-4-9B series of open-source models.
GLM-4-9B is the open-source version of the latest generation of pre-trained models in the GLM-4 series launched by Zhipu AI. In the evaluation of data sets in semantics, mathematics, reasoning, code, and knowledge, GLM-4-9B and its human preference-aligned version GLM-4-9B-Chat have shown superior performance beyond Llama-3-8B. In addition to multi-round conversations, GLM-4-9B-Chat also has advanced features such as web browsing, code execution, custom tool calls (Function Call), and long text reasoning (supporting up to 128K context). This generation of models has added multi-language support, supporting 26 languages including Japanese, Korean, and German. We have also launched the GLM-4-9B-Chat-1M model that supports 1M context length (about 2 million Chinese characters) and the multimodal model GLM-4V-9B based on GLM-4-9B. GLM-4V-9B possesses dialogue capabilities in both Chinese and English at a high resolution of 1120*1120. In various multimodal evaluations, including comprehensive abilities in Chinese and English, perception & reasoning, text recognition, and chart understanding, GLM-4V-9B demonstrates superior performance compared to GPT-4-turbo-2024-04-09, Gemini 1.0 Pro, Qwen-VL-Max, and Claude 3 Opus.
Model | Type | Seq Length | Transformers Version | Download | Online Demo |
---|---|---|---|---|---|
GLM-4-9B | Base | 8K | 4.44.0 - 4.45.0 |
🤗 Huggingface 🤖 ModelScope 🟣 WiseModel |
/ |
GLM-4-9B-Chat | Chat | 128K | >= 4.44.0 |
🤗 Huggingface 🤖 ModelScope 🟣 WiseModel |
🤖 ModelScope CPU 🤖 ModelScope vLLM |
GLM-4-9B-Chat-HF | Chat | 128K | >= 4.46.0 |
🤗 Huggingface 🤖 ModelScope |
🤖 ModelScope CPU 🤖 ModelScope vLLM |
GLM-4-9B-Chat-1M | Chat | 1M | >= 4.44.0 |
🤗 Huggingface 🤖 ModelScope 🟣 WiseModel |
/ |
GLM-4-9B-Chat-1M-HF | Chat | 1M | >= 4.46.0 |
🤗 Huggingface 🤖 ModelScope |
/ |
GLM-4V-9B | Chat | 8K | >= 4.46.0 |
🤗 Huggingface 🤖 ModelScope 🟣 WiseModel |
🤖 ModelScope |
Model | AlignBench | MT-Bench | IFEval | MMLU | C-Eval | GSM8K | MATH | HumanEval | NaturalCodeBench |
---|---|---|---|---|---|---|---|---|---|
Llama-3-8B-Instruct | 6.40 | 8.00 | 68.58 | 68.4 | 51.3 | 79.6 | 30.0 | 62.2 | 24.7 |
ChatGLM3-6B | 5.18 | 5.50 | 28.1 | 66.4 | 69.0 | 72.3 | 25.7 | 58.5 | 11.3 |
GLM-4-9B-Chat | 7.01 | 8.35 | 69.0 | 72.4 | 75.6 | 79.6 | 50.6 | 71.8 | 32.2 |
Model | MMLU | C-Eval | GPQA | GSM8K | MATH | HumanEval |
---|---|---|---|---|---|---|
Llama-3-8B | 66.6 | 51.2 | - | 45.8 | - | 33.5 |
Llama-3-8B-Instruct | 68.4 | 51.3 | 34.2 | 79.6 | 30.0 | 62.2 |
ChatGLM3-6B-Base | 61.4 | 69.0 | 26.8 | 72.3 | 25.7 | 58.5 |
GLM-4-9B | 74.7 | 77.1 | 34.3 | 84.0 | 30.4 | 70.1 |
Since
GLM-4-9B
adds some math, reasoning, and code-related instruction data during pre-training, Llama-3-8B-Instruct is also included in the comparison range.
The needle-in-the-haystack experiment was conducted with a context length of 1M, and the results are as follows:
The long text capability was further evaluated on LongBench-Chat, and the results are as follows:
The tests for GLM-4-9B-Chat and Llama-3-8B-Instruct are conducted on six multilingual datasets. The test results and the corresponding languages selected for each dataset are shown in the table below:
Dataset | Llama-3-8B-Instruct | GLM-4-9B-Chat | Languages |
---|---|---|---|
M-MMLU | 49.6 | 56.6 | all |
FLORES | 25.0 | 28.8 | ru, es, de, fr, it, pt, pl, ja, nl, ar, tr, cs, vi, fa, hu, el, ro, sv, uk, fi, ko, da, bg, no |
MGSM | 54.0 | 65.3 | zh, en, bn, de, es, fr, ja, ru, sw, te, th |
XWinograd | 61.7 | 73.1 | zh, en, fr, jp, ru, pt |
XStoryCloze | 84.7 | 90.7 | zh, en, ar, es, eu, hi, id, my, ru, sw, te |
XCOPA | 73.3 | 80.1 | zh, et, ht, id, it, qu, sw, ta, th, tr, vi |
Tested on Berkeley Function Calling Leaderboard.
Model | Overall Acc. | AST Summary | Exec Summary | Relevance |
---|---|---|---|---|
Llama-3-8B-Instruct | 58.88 | 59.25 | 70.01 | 45.83 |
gpt-4-turbo-2024-04-09 | 81.24 | 82.14 | 78.61 | 88.75 |
ChatGLM3-6B | 57.88 | 62.18 | 69.78 | 5.42 |
GLM-4-9B-Chat | 81.00 | 80.26 | 84.40 | 87.92 |
GLM-4V-9B is a multimodal language model with visual understanding capabilities. The evaluation results of its related classic tasks are as follows:
MMBench-EN-Test | MMBench-CN-Test | SEEDBench_IMG | MMStar | MMMU | MME | HallusionBench | AI2D | OCRBench | |
---|---|---|---|---|---|---|---|---|---|
gpt-4o-2024-05-13 | 83.4 | 82.1 | 77.1 | 63.9 | 69.2 | 2310.3 | 55 | 84.6 | 736 |
gpt-4-turbo-2024-04-09 | 81.0 | 80.2 | 73.0 | 56.0 | 61.7 | 2070.2 | 43.9 | 78.6 | 656 |
gpt-4-1106-preview | 77.0 | 74.4 | 72.3 | 49.7 | 53.8 | 1771.5 | 46.5 | 75.9 | 516 |
InternVL-Chat-V1.5 | 82.3 | 80.7 | 75.2 | 57.1 | 46.8 | 2189.6 | 47.4 | 80.6 | 720 |
LLaVA-Next-Yi-34B | 81.1 | 79 | 75.7 | 51.6 | 48.8 | 2050.2 | 34.8 | 78.9 | 574 |
Step-1V | 80.7 | 79.9 | 70.3 | 50.0 | 49.9 | 2206.4 | 48.4 | 79.2 | 625 |
MiniCPM-Llama3-V2.5 | 77.6 | 73.8 | 72.3 | 51.8 | 45.8 | 2024.6 | 42.4 | 78.4 | 725 |
Qwen-VL-Max | 77.6 | 75.7 | 72.7 | 49.5 | 52 | 2281.7 | 41.2 | 75.7 | 684 |
Gemini 1.0 Pro | 73.6 | 74.3 | 70.7 | 38.6 | 49 | 2148.9 | 45.7 | 72.9 | 680 |
Claude 3 Opus | 63.3 | 59.2 | 64 | 45.7 | 54.9 | 1586.8 | 37.8 | 70.6 | 694 |
GLM-4V-9B | 81.1 | 79.4 | 76.8 | 58.7 | 47.2 | 2163.8 | 46.6 | 81.1 | 786 |
For hardware configuration and system requirements, please check here.
Use the transformers backend for inference:
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
import os
os.environ[
'CUDA_VISIBLE_DEVICES'] = '0' # Set the GPU number. If inference with multiple GPUs, set multiple GPU numbers
MODEL_PATH = "THUDM/glm-4-9b-chat-hf"
device = "cuda" if torch.cuda.is_available() else "cpu"
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, trust_remote_code=True)
query = "你好"
inputs = tokenizer.apply_chat_template([{"role": "user", "content": query}],
add_generation_prompt=True,
tokenize=True,
return_tensors="pt",
return_dict=True
)
inputs = inputs.to(device)
model = AutoModelForCausalLM.from_pretrained(
MODEL_PATH,
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
trust_remote_code=True,
device_map="auto"
).eval()
gen_kwargs = {"max_length": 2500, "do_sample": True, "top_k": 1}
with torch.no_grad():
outputs = model.generate(**inputs, **gen_kwargs)
outputs = outputs[:, inputs['input_ids'].shape[1]:]
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
Use the vLLM backend for inference:
from transformers import AutoTokenizer
from vllm import LLM, SamplingParams
# GLM-4-9B-Chat
# If you encounter OOM, you can try to reduce max_model_len or increase tp_size
max_model_len, tp_size = 131072, 1
model_name = "THUDM/glm-4-9b-chat-hf"
prompt = [{"role": "user", "content": "你好"}]
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
llm = LLM(
model=model_name,
tensor_parallel_size=tp_size,
max_model_len=max_model_len,
trust_remote_code=True,
enforce_eager=True,
# if you encounter OOM in GLM-4-9B-Chat-1M, you can try to enable the following parameters
# enable_chunked_prefill=True,
# max_num_batched_tokens=8192
)
stop_token_ids = [151329, 151336, 151338]
sampling_params = SamplingParams(temperature=0.95, max_tokens=1024, stop_token_ids=stop_token_ids)
inputs = tokenizer.apply_chat_template(prompt, tokenize=False, add_generation_prompt=True)
outputs = llm.generate(prompts=inputs, sampling_params=sampling_params)
print(outputs[0].outputs[0].text)
Use the transformers backend for inference:
import torch
from PIL import Image
from transformers import AutoModelForCausalLM, AutoTokenizer
import os
os.environ[
'CUDA_VISIBLE_DEVICES'] = '0' # Set the GPU number. If inference with multiple GPUs, set multiple GPU numbers
MODEL_PATH = "THUDM/glm-4v-9b"
device = "cuda" if torch.cuda.is_available() else "cpu"
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, trust_remote_code=True)
query = '描述这张图片'
image = Image.open("your image").convert('RGB')
inputs = tokenizer.apply_chat_template([{"role": "user", "image": image, "content": query}],
add_generation_prompt=True, tokenize=True, return_tensors="pt",
return_dict=True) # chat mode
inputs = inputs.to(device)
model = AutoModelForCausalLM.from_pretrained(
MODEL_PATH,
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
trust_remote_code=True,
device_map="auto"
).eval()
gen_kwargs = {"max_length": 2500, "do_sample": True, "top_k": 1}
with torch.no_grad():
outputs = model.generate(**inputs, **gen_kwargs)
outputs = outputs[:, inputs['input_ids'].shape[1]:]
print(tokenizer.decode(outputs[0]))
Use the vLLM backend for inference:
from PIL import Image
from vllm import LLM, SamplingParams
model_name = "THUDM/glm-4v-9b"
llm = LLM(model=model_name,
tensor_parallel_size=1,
max_model_len=8192,
trust_remote_code=True,
enforce_eager=True)
stop_token_ids = [151329, 151336, 151338]
sampling_params = SamplingParams(temperature=0.2,
max_tokens=1024,
stop_token_ids=stop_token_ids)
prompt = "What's the content of the image?"
image = Image.open("your image").convert('RGB')
inputs = {
"prompt": prompt,
"multi_modal_data": {
"image": image
},
}
outputs = llm.generate(inputs, sampling_params=sampling_params)
for o in outputs:
generated_text = o.outputs[0].text
print(generated_text)
If you want to learn more about the GLM-4-9B series open source models, this open source repository provides developers with basic GLM-4-9B usage and development code through the following content
-
basic_demo: Contains
- Interaction code using transformers and vLLM backend
- OpenAI API backend interaction code
- Batch reasoning code
-
composite_demo: Contains
- Fully functional demonstration code for GLM-4-9B and GLM-4V-9B open source models, including All Tools capabilities, long document interpretation, and multimodal capabilities.
-
fintune_demo: Contains
- PEFT (LORA, P-Tuning) fine-tuning code
- SFT fine-tuning code
-
intel_device_demo: Contains
- OpenVINO deployment code
- Intel® Extension for Transformers deployment code
- LLaMA-Factory: Efficient open-source fine-tuning framework, already supports GLM-4-9B-Chat language model fine-tuning.
- SWIFT: LLM/VLM training framework from ModelScope, supports GLM-4-9B-Chat / GLM-4V-9b fine-tuning.
- Xorbits Inference: Performance-enhanced and comprehensive global inference framework, easily deploy your own models or import cutting-edge open source models with one click.
- LangChain-ChatChat: RAG and Agent applications based on language models such as Langchain and ChatGLM
- self-llm: Datawhale's self-llm project, which includes the GLM-4-9B open source model cookbook.
- chatglm.cpp: Real-time inference on your laptop accelerated by quantization, similar to llama.cpp.
- OpenVINO: glm-4-9b-chat already supports the use of OpenVINO. The toolkit accelerates inference and has a greater inference speed improvement on Intel's GPU, GPU and NPU devices. For specific usage, please refer to OpenVINO notebooks
-
The use of GLM-4 model weights must follow the Model License.
-
The code in this open source repository follows the Apache 2.0 license.
Please strictly follow the open source license.
If you find our work helpful, please consider citing the following paper.
@misc{glm2024chatglm,
title={ChatGLM: A Family of Large Language Models from GLM-130B to GLM-4 All Tools},
author={Team GLM and Aohan Zeng and Bin Xu and Bowen Wang and Chenhui Zhang and Da Yin and Diego Rojas and Guanyu Feng and Hanlin Zhao and Hanyu Lai and Hao Yu and Hongning Wang and Jiadai Sun and Jiajie Zhang and Jiale Cheng and Jiayi Gui and Jie Tang and Jing Zhang and Juanzi Li and Lei Zhao and Lindong Wu and Lucen Zhong and Mingdao Liu and Minlie Huang and Peng Zhang and Qinkai Zheng and Rui Lu and Shuaiqi Duan and Shudan Zhang and Shulin Cao and Shuxun Yang and Weng Lam Tam and Wenyi Zhao and Xiao Liu and Xiao Xia and Xiaohan Zhang and Xiaotao Gu and Xin Lv and Xinghan Liu and Xinyi Liu and Xinyue Yang and Xixuan Song and Xunkai Zhang and Yifan An and Yifan Xu and Yilin Niu and Yuantao Yang and Yueyan Li and Yushi Bai and Yuxiao Dong and Zehan Qi and Zhaoyu Wang and Zhen Yang and Zhengxiao Du and Zhenyu Hou and Zihan Wang},
year={2024},
eprint={2406.12793},
archivePrefix={arXiv},
primaryClass={id='cs.CL' full_name='Computation and Language' is_active=True alt_name='cmp-lg' in_archive='cs' is_general=False description='Covers natural language processing. Roughly includes material in ACM Subject Class I.2.7. Note that work on artificial languages (programming languages, logics, formal systems) that does not explicitly address natural-language issues broadly construed (natural-language processing, computational linguistics, speech, text retrieval, etc.) is not appropriate for this area.'}
}
@misc{wang2023cogvlm,
title={CogVLM: Visual Expert for Pretrained Language Models},
author={Weihan Wang and Qingsong Lv and Wenmeng Yu and Wenyi Hong and Ji Qi and Yan Wang and Junhui Ji and Zhuoyi Yang and Lei Zhao and Xixuan Song and Jiazheng Xu and Bin Xu and Juanzi Li and Yuxiao Dong and Ming Ding and Jie Tang},
year={2023},
eprint={2311.03079},
archivePrefix={arXiv},
primaryClass={cs.CV}
}