-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTrainCNN.py
74 lines (63 loc) · 2.33 KB
/
TrainCNN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import numpy as np
import cv2
from tensorflow.keras.datasets import cifar10
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, Dropout, BatchNormalization
from tensorflow.keras.utils import to_categorical
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.callbacks import EarlyStopping
from tensorflow.keras.optimizers import Adam
#this has to be on virtual env
# Load CIFAR-10 dataset
(X_train, y_train), (X_test, y_test) = cifar10.load_data()
# Preprocess CIFAR-10 dataset
X_train = X_train.astype('float32') / 255.0
X_test = X_test.astype('float32') / 255.0
y_train = to_categorical(y_train, 10)
y_test = to_categorical(y_test, 10)
# Data Augmentation
datagen = ImageDataGenerator(
rotation_range=15,
width_shift_range=0.1,
height_shift_range=0.1,
horizontal_flip=True,
)
datagen.fit(X_train)
# Define the CNN architecture with improvements
model = Sequential([
Conv2D(32, (3, 3), activation='relu', padding='same', input_shape=(32, 32, 3)),
BatchNormalization(),
Conv2D(32, (3, 3), activation='relu', padding='same'),
BatchNormalization(),
MaxPooling2D((2, 2)),
Dropout(0.2),
Conv2D(64, (3, 3), activation='relu', padding='same'),
BatchNormalization(),
Conv2D(64, (3, 3), activation='relu', padding='same'),
BatchNormalization(),
MaxPooling2D((2, 2)),
Dropout(0.3),
Conv2D(128, (3, 3), activation='relu', padding='same'),
BatchNormalization(),
Conv2D(128, (3, 3), activation='relu', padding='same'),
BatchNormalization(),
MaxPooling2D((2, 2)),
Dropout(0.4),
Flatten(),
Dense(128, activation='relu'),
BatchNormalization(),
Dropout(0.5),
Dense(10, activation='softmax')
])
# Compile the model
model.compile(optimizer=Adam(learning_rate=0.001), loss='categorical_crossentropy', metrics=['accuracy'])
# Early Stopping
early_stopping = EarlyStopping(monitor='val_loss', patience=10, verbose=1)
# Train the model
model.fit(datagen.flow(X_train, y_train, batch_size=64),
epochs=20, # Increased epochs for better training with early stopping
validation_data=(X_test, y_test),
callbacks=[early_stopping])
# Evaluate the model
test_loss, test_acc = model.evaluate(X_test, y_test)
print('Test accuracy:', test_acc)