forked from mosaicml/examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsequence_classification.py
214 lines (183 loc) · 7.62 KB
/
sequence_classification.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
# Copyright 2022 MosaicML Examples authors
# SPDX-License-Identifier: Apache-2.0
"""A starter script for fine-tuning a BERT model on your own dataset."""
import os
import sys
from typing import Optional, cast
import transformers
from composer import Trainer
from composer.core.types import Dataset
from composer.utils import dist, reproducibility
from omegaconf import DictConfig
from omegaconf import OmegaConf as om
from torch.utils.data import DataLoader
from examples.bert.src.glue.data import create_glue_dataset
from examples.bert.src.hf_bert import create_hf_bert_classification
from examples.bert.src.mosaic_bert import create_mosaic_bert_classification
from examples.common.builders import (build_algorithm, build_callback,
build_logger, build_optimizer,
build_scheduler)
from examples.common.config_utils import log_config, update_batch_size_info
def build_my_dataloader(cfg: DictConfig, device_batch_size: int):
"""Create a dataloader for classification.
**Modify this function to train on your own dataset!**
This function is provided as a starter code to simplify fine-tuning a BERT
classifier on your dataset. We'll use the dataset for QNLI (one of the
GLUE tasks) as a demonstration.
Args:
cfg (DictConfig): An omegaconf config that houses all the configuration
variables needed to instruct dataset/dataloader creation.
device_batch_size (int): The size of the batches that the dataloader
should produce.
Returns:
dataloader: A dataloader set up for use of the Composer Trainer.
"""
# As a demonstration, we're using the QNLI dataset from the GLUE suite
# of tasks.
#
# Note: We create our dataset using the `create_glue_dataset` utility
# defined in `./src/glue/data.py`. If you inspect that code, you'll see
# that we're taking some extra steps so that our dataset yields examples
# that follow a particular format. In particular, the raw text is
# tokenized and some of the data columns are removed. The result is that
# each example is a dictionary with the following:
#
# - 'input_ids': the tokenized raw text
# - 'label': the target class that the text belongs to
# - 'attention_mask': a list of 1s and 0s to indicate padding
#
# When you set up your own dataset, it should handle tokenization to yield
# examples with a similar structure!
#
# REPLACE THIS WITH YOUR OWN DATASET:
dataset = create_glue_dataset(
task='qnli',
split=cfg.split,
tokenizer_name=cfg.tokenizer_name,
max_seq_length=cfg.max_seq_len,
)
dataset = cast(Dataset, dataset)
dataloader = DataLoader(
dataset,
# As an alternative to formatting the examples inside the dataloader,
# you can write a custom data collator to do that instead.
collate_fn=transformers.default_data_collator,
batch_size=device_batch_size,
sampler=dist.get_sampler(dataset,
drop_last=cfg.drop_last,
shuffle=cfg.shuffle),
num_workers=cfg.num_workers,
pin_memory=cfg.get('pin_memory', True),
prefetch_factor=cfg.get('prefetch_factor', 2),
persistent_workers=cfg.get('persistent_workers', True),
timeout=cfg.get('timeout', 0),
)
return dataloader
def build_model(cfg: DictConfig):
# Note: cfg.num_labels should match the number of classes in your dataset!
if cfg.name == 'hf_bert':
return create_hf_bert_classification(
num_labels=cfg.num_labels,
pretrained_model_name=cfg.pretrained_model_name,
use_pretrained=cfg.get('use_pretrained', False),
model_config=cfg.get('model_config'),
tokenizer_name=cfg.get('tokenizer_name'),
gradient_checkpointing=cfg.get('gradient_checkpointing'))
elif cfg.name == 'mosaic_bert':
return create_mosaic_bert_classification(
num_labels=cfg.num_labels,
pretrained_model_name=cfg.pretrained_model_name,
pretrained_checkpoint=cfg.get('pretrained_checkpoint'),
model_config=cfg.get('model_config'),
tokenizer_name=cfg.get('tokenizer_name'),
gradient_checkpointing=cfg.get('gradient_checkpointing'))
else:
raise ValueError(f'Not sure how to build model with name={cfg.name}')
def main(cfg: DictConfig,
return_trainer: bool = False,
do_train: bool = True) -> Optional[Trainer]:
print('Training using config: ')
print(om.to_yaml(cfg))
reproducibility.seed_all(cfg.seed)
# Get batch size info
cfg = update_batch_size_info(cfg)
# Build Model
print('Initializing model...')
model = build_model(cfg.model)
n_params = sum(p.numel() for p in model.parameters())
print(f'{n_params=:.4e}')
# Dataloaders
print('Building train loader...')
train_loader = build_my_dataloader(cfg.train_loader,
cfg.device_train_batch_size)
print('Building eval loader...')
eval_loader = build_my_dataloader(cfg.eval_loader,
cfg.device_eval_batch_size)
# Optimizer
optimizer = build_optimizer(cfg.optimizer, model)
# Scheduler
scheduler = build_scheduler(cfg.scheduler)
# Loggers
loggers = [
build_logger(name, logger_cfg)
for name, logger_cfg in cfg.get('loggers', {}).items()
]
# Callbacks
callbacks = [
build_callback(name, callback_cfg)
for name, callback_cfg in cfg.get('callbacks', {}).items()
]
# Algorithms
algorithms = [
build_algorithm(name, algorithm_cfg)
for name, algorithm_cfg in cfg.get('algorithms', {}).items()
]
if cfg.get('run_name') is None:
cfg.run_name = os.environ.get('COMPOSER_RUN_NAME',
'sequence-classification')
# Build the Trainer
trainer = Trainer(
run_name=cfg.run_name,
seed=cfg.seed,
model=model,
algorithms=algorithms,
train_dataloader=train_loader,
eval_dataloader=eval_loader,
train_subset_num_batches=cfg.get('train_subset_num_batches', -1),
eval_subset_num_batches=cfg.get('eval_subset_num_batches', -1),
optimizers=optimizer,
schedulers=scheduler,
max_duration=cfg.max_duration,
eval_interval=cfg.eval_interval,
progress_bar=cfg.progress_bar,
log_to_console=cfg.log_to_console,
console_log_interval=cfg.console_log_interval,
loggers=loggers,
callbacks=callbacks,
precision=cfg.precision,
device=cfg.get('device'),
device_train_microbatch_size=cfg.get('device_train_microbatch_size',
'auto'),
save_folder=cfg.get('save_folder'),
save_interval=cfg.get('save_interval', '1000ba'),
save_num_checkpoints_to_keep=cfg.get('save_num_checkpoints_to_keep',
-1),
save_overwrite=cfg.get('save_overwrite', False),
load_path=cfg.get('load_path'),
load_weights_only=True,
)
print('Logging config...')
log_config(cfg)
if do_train:
print('Starting training...')
trainer.fit()
if return_trainer:
return trainer
if __name__ == '__main__':
yaml_path, args_list = sys.argv[1], sys.argv[2:]
with open(yaml_path) as f:
yaml_cfg = om.load(f)
cli_cfg = om.from_cli(args_list)
cfg = om.merge(yaml_cfg, cli_cfg)
cfg = cast(DictConfig, cfg) # for type checking
main(cfg)