-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathtrain_student_one_queue.py
272 lines (201 loc) · 8.67 KB
/
train_student_one_queue.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
import os
import sys
import time
import torch
import torch.backends.cudnn as cudnn
import argparse
import socket
from torchvision import transforms, datasets
import torch.nn as nn
from util import adjust_learning_rate, AverageMeter
from models.resnet import resnet18, resnet50
from models.alexnet import AlexNet as alexnet
from models.mobilenet import MobileNetV2 as mobilenet
from nn.compress_loss import CompReSSA, Teacher
from collections import OrderedDict
def parse_option():
parser = argparse.ArgumentParser('argument for training')
parser.add_argument('data', type=str, help='path to dataset')
parser.add_argument('--print_freq', type=int, default=100, help='print frequency')
parser.add_argument('--tb_freq', type=int, default=500, help='tb frequency')
parser.add_argument('--save_freq', type=int, default=2, help='save frequency')
parser.add_argument('--batch_size', type=int, default=256, help='batch_size')
parser.add_argument('--num_workers', type=int, default=12, help='num of workers to use')
parser.add_argument('--epochs', type=int, default=130, help='number of training epochs')
# optimization
parser.add_argument('--learning_rate', type=float, default=0.01, help='learning rate')
parser.add_argument('--lr_decay_epochs', type=str, default='90,120', help='where to decay lr, can be a list')
parser.add_argument('--lr_decay_rate', type=float, default=0.2, help='decay rate for learning rate')
parser.add_argument('--weight_decay', type=float, default=1e-4, help='weight decay')
parser.add_argument('--momentum', type=float, default=0.9, help='momentum')
# model definition
parser.add_argument('--student_arch', type=str, default='alexnet',
choices=['alexnet', 'resnet18', 'resnet50', 'mobilenet'])
parser.add_argument('--teacher_arch', type=str, default='resnet50',
choices=['resnet50x4', 'resnet50'])
parser.add_argument('--cache_teacher', action='store_true',
help='use cached teacher')
# CompReSS loss function
parser.add_argument('--compress_memory_size', type=int, default=128000)
parser.add_argument('--compress_t', type=float, default=0.04)
# GPU setting
parser.add_argument('--gpu', default=None, type=int, help='GPU id to use.')
parser.add_argument('--teacher', type=str, help='teacher weights/feats')
parser.add_argument('--checkpoint_path', default='output/', type=str,
help='where to save checkpoints. ')
opt = parser.parse_args()
iterations = opt.lr_decay_epochs.split(',')
opt.lr_decay_epochs = list([])
for it in iterations:
opt.lr_decay_epochs.append(int(it))
return opt
# Extended version of ImageFolder to return index of image too.
class ImageFolderEx(datasets.ImageFolder):
def __getitem__(self, index):
sample, target = super(ImageFolderEx, self).__getitem__(index)
return index, sample, target
# Create teacher model and load weights. For cached teacher load cahced features instead.
def get_teacher_model(opt):
teacher = None
if opt.cache_teacher:
print('==> cached teacher')
train_feats, train_labels, indices = torch.load(opt.teacher)
teacher = Teacher(cached=True, cached_feats=train_feats)
elif opt.teacher_arch == 'resnet50':
print('==> online teacher')
model_t = resnet50()
model_t.fc = nn.Sequential()
model_t = nn.Sequential(OrderedDict([('encoder_q', model_t)]))
model_t = torch.nn.DataParallel(model_t).cuda()
checkpoint = torch.load(opt.teacher)
msg = model_t.load_state_dict(checkpoint['state_dict'], strict=False)
print('==> loading teacher weights')
print(msg)
model_t = model_t.module.cpu()
for p in model_t.parameters():
p.requires_grad = False
teacher = Teacher(cached=False, model=model_t)
return teacher
# Create student query/key model
def get_student_model(opt):
student = None
if opt.student_arch == 'alexnet':
student = alexnet()
student.fc = nn.Sequential()
elif opt.student_arch == 'mobilenet':
student = mobilenet()
student.fc = nn.Sequential()
elif opt.student_arch == 'resnet18':
student = resnet18()
student.fc = nn.Sequential()
elif opt.student_arch == 'resnet50':
student = resnet50(fc_dim=8192)
return student
# Create train loader
def get_train_loader(opt):
data_folder = os.path.join(opt.data, 'train')
mean = [0.485, 0.456, 0.406]
std = [0.229, 0.224, 0.225]
normalize = transforms.Normalize(mean=mean, std=std)
train_dataset = ImageFolderEx(
data_folder,
transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
]))
train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=opt.batch_size, shuffle=True,
num_workers=opt.num_workers, pin_memory=True)
return train_loader
def main():
args = parse_option()
os.makedirs(args.checkpoint_path, exist_ok=True)
if args.gpu is not None:
print("Use GPU: {} for training".format(args.gpu))
train_loader = get_train_loader(args)
teacher = get_teacher_model(args)
student = get_student_model(args)
# calculate feature dimension of student and teacher
teacher.eval()
student.eval()
tmp_input = torch.randn(2, 3, 224, 224)
feat_t = teacher.forward(tmp_input, 0)
feat_s = student(tmp_input)
student_feats_dim = feat_s.shape[-1]
teacher_feats_dim = feat_t.shape[-1]
student.fc = nn.Linear(student_feats_dim, teacher_feats_dim)
compress = CompReSSA(teacher_feats_dim, args.compress_memory_size, args.compress_t)
student = torch.nn.DataParallel(student).cuda()
teacher.gpu()
optimizer = torch.optim.SGD(student.parameters(),
lr=args.learning_rate,
momentum=args.momentum,
weight_decay=args.weight_decay)
cudnn.benchmark = True
args.start_epoch = 1
# routine
for epoch in range(args.start_epoch, args.epochs + 1):
adjust_learning_rate(epoch, args, optimizer)
print("==> training...")
time1 = time.time()
loss = train_student(epoch, train_loader, teacher, student, compress, optimizer, args)
time2 = time.time()
print('epoch {}, total time {:.2f}'.format(epoch, time2 - time1))
# saving the model
if epoch % args.save_freq == 0:
print('==> Saving...')
state = {
'opt': args,
'model': student.state_dict(),
'optimizer': optimizer.state_dict(),
'epoch': epoch,
}
save_file = os.path.join(args.checkpoint_path, 'ckpt_epoch_{epoch}.pth'.format(epoch=epoch))
torch.save(state, save_file)
# help release GPU memory
del state
torch.cuda.empty_cache()
def train_student(epoch, train_loader, teacher, student, compress, optimizer, opt):
"""
one epoch training for CompReSS
"""
student.train()
batch_time = AverageMeter()
data_time = AverageMeter()
loss_meter = AverageMeter()
end = time.time()
for idx, (index, inputs, _) in enumerate(train_loader):
data_time.update(time.time() - end)
bsz = inputs.size(0)
inputs = inputs.float()
if opt.gpu is not None:
inputs = inputs.cuda(opt.gpu, non_blocking=True)
else:
inputs = inputs.cuda()
# ===================forward=====================
teacher_feats = teacher.forward(inputs, index)
student_feats = student(inputs)
loss = compress(teacher_feats, student_feats)
# ===================backward=====================
optimizer.zero_grad()
loss.backward()
optimizer.step()
# ===================meters=====================
loss_meter.update(loss.item(), bsz)
torch.cuda.synchronize()
batch_time.update(time.time() - end)
end = time.time()
# print info
if (idx + 1) % opt.print_freq == 0:
print('Train: [{0}][{1}/{2}]\t'
'BT {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'DT {data_time.val:.3f} ({data_time.avg:.3f})\t'
'loss {loss.val:.3f} ({loss.avg:.3f})\t'.format(
epoch, idx + 1, len(train_loader), batch_time=batch_time,
data_time=data_time, loss=loss_meter))
sys.stdout.flush()
return loss_meter.avg
if __name__ == '__main__':
main()