-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtools.py
142 lines (110 loc) · 3.92 KB
/
tools.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import shutil
import logging
import os
import torch
from torch import nn
from torchvision import models
def get_logger(logpath, filepath, package_files=[], displaying=True, saving=True, debug=False):
logger = logging.getLogger()
if debug:
level = logging.DEBUG
else:
level = logging.INFO
logger.setLevel(level)
if saving:
info_file_handler = logging.FileHandler(logpath, mode="a")
info_file_handler.setLevel(level)
logger.addHandler(info_file_handler)
if displaying:
console_handler = logging.StreamHandler()
console_handler.setLevel(level)
logger.addHandler(console_handler)
logger.info(filepath)
with open(filepath, "r") as f:
logger.info(f.read())
for f in package_files:
logger.info(f)
with open(f, "r") as package_f:
logger.info(package_f.read())
return logger
def makedirs(dirname):
if not os.path.exists(dirname):
os.makedirs(dirname)
def save_each_checkpoint(state, epoch, save_dir):
ckpt_path = os.path.join(save_dir, 'ckpt_%d.pth.tar' % epoch)
torch.save(state, ckpt_path)
def save_checkpoint(state, is_best, save_dir):
ckpt_path = os.path.join(save_dir, 'checkpoint.pth.tar')
torch.save(state, ckpt_path)
if is_best:
best_ckpt_path = os.path.join(save_dir, 'model_best.pth.tar')
shutil.copyfile(ckpt_path, best_ckpt_path)
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self, name, fmt=':f'):
self.name = name
self.fmt = fmt
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def __str__(self):
fmtstr = '{name} {val' + self.fmt + '} ({avg' + self.fmt + '})'
return fmtstr.format(**self.__dict__)
class ProgressMeter(object):
def __init__(self, num_batches, meters, prefix=""):
self.batch_fmtstr = self._get_batch_fmtstr(num_batches)
self.meters = meters
self.prefix = prefix
def display(self, batch):
entries = [self.prefix + self.batch_fmtstr.format(batch)]
entries += [str(meter) for meter in self.meters]
return '\t'.join(entries)
def _get_batch_fmtstr(self, num_batches):
num_digits = len(str(num_batches // 1))
fmt = '{:' + str(num_digits) + 'd}'
return '[' + fmt + '/' + fmt.format(num_batches) + ']'
def accuracy(output, target, topk=(1,)):
"""Computes the accuracy over the k top predictions for the specified values of k"""
with torch.no_grad():
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
return res
arch_to_key = {
'alexnet': 'alexnet',
'alexnet_moco': 'alexnet',
'resnet18': 'resnet18',
'resnet50': 'resnet50',
'rotnet_r50': 'resnet50',
'rotnet_r18': 'resnet18',
'resnet18_moco': 'resnet18',
'resnet_moco': 'resnet50',
}
model_names = list(arch_to_key.keys())
def remove_dropout(model):
classif = model.classifier.children()
classif = [nn.Sequential() if isinstance(m, nn.Dropout) else m for m in classif]
model.classifier = nn.Sequential(*classif)
# 1. stores a list of models to ensemble
# 2. forward through each model and save the output
# 3. return mean of the outputs along the class dimension
class EnsembleNet(nn.ModuleList):
def forward(self, x):
out = [m(x) for m in self]
out = torch.stack(out, dim=-1)
out = out.mean(dim=-1)
return out