-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathactor_critic_cartpole.py
245 lines (201 loc) · 8.29 KB
/
actor_critic_cartpole.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
import gymnasium as gym
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import animation as anim
from dataclasses import dataclass
from itertools import count
import random
import typing as tp
import time
import math
import torch
from torch import nn, Tensor
SEED:int = 42
ENV_NAME:str = "CartPole-v1"
@dataclass
class config:
num_steps_per_episode:int = 500
num_episodes:int = 1000 # 1000
gamma:float = 0.99
maxlr:float = 1e-3
minlr:float = maxlr*0.1
warmup_steps:int = 1
weight_decay:float = 0.0
device:torch.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
dtype:torch.dtype = torch.float32 # if "cpu" in device.type else torch.bfloat16
def update_scene(num, frames, patch):
patch.set_data(frames[num])
return patch,
def plot_animation(frames:list, save_path:tp.Optional[str]=None, repeat=False, interval=40):
fig = plt.figure()
patch = plt.imshow(frames[0])
plt.axis('off')
animation = anim.FuncAnimation(
fig, update_scene, fargs=(frames, patch),
frames=len(frames), repeat=repeat, interval=interval)
if save_path is not None:
animation.save(save_path, writer="pillow", fps=20)
return animation
def show_one_episode(action_sampler:tp.Callable, save_path:tp.Optional[str]=None, n_max_steps=500, repeat=False):
frames = []
env = gym.make(ENV_NAME, render_mode="rgb_array")
obs, info = env.reset()
with torch.no_grad():
for step in range(n_max_steps):
frames.append(env.render())
action = action_sampler(obs)
obs, reward, done, truncated, info = env.step(action)
if done or truncated:
print("done at step", step+1)
break
env.close()
return plot_animation(frames, repeat=repeat, save_path=save_path)
class CosineDecayWithWarmup:
def __init__(
self,
warmup_steps:int,
max_learning_rate:float,
decay_steps:int,
min_learning_rate:float
):
self.warmup_steps = warmup_steps
self.max_learning_rate = max_learning_rate
self.decay_steps = decay_steps
self.min_learning_rate = min_learning_rate
def __call__(self, step):
if step < self.warmup_steps:
return self.max_learning_rate * step / self.warmup_steps
if step > self.decay_steps:
return self.min_learning_rate
decay_ratio = (step - self.warmup_steps) / (self.decay_steps - self.warmup_steps)
coeff = 0.5 * (1.0 + math.cos(math.pi * decay_ratio))
return self.min_learning_rate + coeff * (self.max_learning_rate - self.min_learning_rate)
def smooth_rewards(sum_rewards_list, smoothing_factor=0.9):
smoothed_rewards = []
running_average = 0 # Initialize the running average
for reward in sum_rewards_list:
running_average = smoothing_factor * running_average + (1 - smoothing_factor) * reward
smoothed_rewards.append(running_average)
return smoothed_rewards
class PolicyNetwork(nn.Module):
def __init__(self, state_dim:int, action_dim:int):
super().__init__()
assert action_dim > 1
self.fc1 = nn.Linear(state_dim, 16)
self.relu1 = nn.ReLU()
self.fc2 = nn.Linear(16, 16)
self.relu2 = nn.ReLU()
self.fc3 = nn.Linear(16, action_dim)
self.softmax = nn.Softmax(dim=-1)
def forward(self, state):
x = self.relu1(self.fc1(state))
x = self.relu2(self.fc2(x))
logits = self.fc3(x)
return self.softmax(logits)
# Define the Value Network
class ValueNetwork(nn.Module):
def __init__(self, state_dim:int):
super().__init__()
self.fc1 = nn.Linear(state_dim, 16)
self.relu1 = nn.ReLU()
self.fc2 = nn.Linear(16, 16)
self.relu2 = nn.ReLU()
self.fc3 = nn.Linear(16, 1)
def forward(self, state):
x = self.relu1(self.fc1(state))
x = self.relu2(self.fc2(x))
value = self.fc3(x)
return value # (B, 1)
def sample_prob_action_from_pi(pi:PolicyNetwork, state:Tensor):
probas:Tensor = pi(state).squeeze(0)
dist = torch.distributions.Categorical(probas)
action = dist.sample()
return action, dist
def main():
print("Training Starts...")
num_steps_over = 0; sum_rewards_list = []
for episode_num in range(config.num_episodes):
state, info = env.reset()
state = torch.as_tensor(state, dtype=config.dtype, device=config.device).unsqueeze(0)
sum_rewards = 0; t0 = time.time()
I = 1.0
lr = get_lr(episode_num)
for param_group1, param_group2 in zip(vopt.param_groups, popt.param_groups):
param_group1["lr"] = lr; param_group2["lr"] = lr
for tstep in count(0):
num_steps_over += 1
# Sample Action from Policy
action, dist = sample_prob_action_from_pi(pi_fn, state)
next_state, reward, done, truncated, info = env.step(int(action))
next_state = torch.as_tensor(next_state, dtype=config.dtype, device=config.device).unsqueeze(0)
sum_rewards += reward
# Actor-Critic Algorithm
## Compute the Value Loss and Update the Value Network
current_state_val:Tensor = value_fn(state)
with torch.no_grad():
next_state_val:Tensor = value_fn(next_state)
target:Tensor = reward + config.gamma*next_state_val*(1-int(done))
td_error = target - current_state_val
value_loss = td_error.pow(2).sum()
value_loss.backward()
vopt.step()
vopt.zero_grad()
## Compute the Policy Loss and Update the Policy Network
td_error = td_error.detach()
policy_loss:Tensor = -dist.log_prob(action).mul(td_error).mul(I)
I *= config.gamma
policy_loss.backward()
popt.step()
popt.zero_grad()
if done or truncated:
break
# Update the state
state = next_state
print(f"|| Episode: {episode_num+1} || Reward: {sum_rewards} || lr: {lr:<12e} || dt: {(time.time()-t0):.4f} ||")
sum_rewards_list.append(sum_rewards)
if sum_rewards[-50:].mean() > 490:
break
print("Training Ends...")
return sum_rewards_list
if __name__ == "__main__":
random.seed(SEED)
np.random.seed(SEED+1)
torch.manual_seed(SEED+2)
torch.use_deterministic_algorithms(mode=True, warn_only=True)
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
env = gym.make(ENV_NAME, render_mode="rgb_array")
pi_fn = PolicyNetwork(env.observation_space.shape[0], env.action_space.n)
pi_fn.to(config.device, dtype=torch.float32)
pi_fn.compile()
print(pi_fn, end=f"| Number of parameters: {sum(p.numel() for p in pi_fn.parameters())}\n\n")
value_fn = ValueNetwork(env.observation_space.shape[0])
value_fn.to(config.device, dtype=torch.float32)
value_fn.compile()
print(value_fn, end=f"| Number of parameters: {sum(p.numel() for p in value_fn.parameters())}\n\n")
vopt = torch.optim.AdamW(value_fn.parameters(), lr=config.maxlr, weight_decay=config.weight_decay, fused=True)
popt = torch.optim.AdamW(pi_fn.parameters(), lr=config.maxlr, weight_decay=config.weight_decay, fused=True)
vopt.zero_grad(); popt.zero_grad()
get_lr = CosineDecayWithWarmup(
warmup_steps=config.warmup_steps,
max_learning_rate=config.maxlr,
decay_steps=config.num_episodes,
min_learning_rate=config.minlr
)
sum_rewards_list = main()
@torch.no_grad()
def action_sampler(state):
return sample_prob_action_from_pi(pi_fn, torch.as_tensor(state, dtype=torch.float32, device=config.device))[0].item()
plt.plot(sum_rewards_list, label="Original rewards")
plt.plot(smooth_rewards(sum_rewards_list, smoothing_factor=0.99), label="Smoothed rewards")
plt.legend()
plt.yticks(np.arange(0, 501, 50))
plt.xlabel("Episode")
plt.ylabel("Sum of rewards")
plt.title("Sum of rewards per episode")
plt.savefig("actor_critic_cartpole_rewards.png")
plt.close()
print("Making GIF...")
show_one_episode(action_sampler, repeat=False, n_max_steps=500, save_path="actor_critic_cartpole.gif")
plt.close()
print("GIF Created Successfully!")