forked from bepu/bepuphysics2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDistanceLimit.cs
187 lines (168 loc) · 11.8 KB
/
DistanceLimit.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
using BepuUtilities;
using BepuUtilities.Memory;
using System;
using System.Diagnostics;
using System.Numerics;
using System.Runtime.CompilerServices;
using static BepuUtilities.GatherScatter;
namespace BepuPhysics.Constraints
{
/// <summary>
/// Constrains points on two bodies to be separated by a distance within a range.
/// </summary>
public struct DistanceLimit : ITwoBodyConstraintDescription<DistanceLimit>
{
/// <summary>
/// Local offset from the center of body A to its attachment point.
/// </summary>
public Vector3 LocalOffsetA;
/// <summary>
/// Local offset from the center of body B to its attachment point.
/// </summary>
public Vector3 LocalOffsetB;
/// <summary>
/// Minimum distance permitted between the point on A and the point on B.
/// </summary>
public float MinimumDistance;
/// <summary>
/// Maximum distance permitted between the point on A and the point on B.
/// </summary>
public float MaximumDistance;
/// <summary>
/// Spring frequency and damping parameters.
/// </summary>
public SpringSettings SpringSettings;
/// <summary>
/// Creates a distance limit description.
/// </summary>
/// <param name="localOffsetA">Local offset from the center of body A to its attachment point.</param>
/// <param name="localOffsetB">Local offset from the center of body B to its attachment point.</param>
/// <param name="minimumDistance">Minimum distance permitted between the point on A and the point on B.</param>
/// <param name="maximumDistance">Maximum distance permitted between the point on A and the point on B.</param>
/// <param name="springSettings">Spring frequency and damping parameters.</param>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public DistanceLimit(Vector3 localOffsetA, Vector3 localOffsetB, float minimumDistance, float maximumDistance, in SpringSettings springSettings)
{
LocalOffsetA = localOffsetA;
LocalOffsetB = localOffsetB;
MinimumDistance = minimumDistance;
MaximumDistance = maximumDistance;
SpringSettings = springSettings;
}
public static int ConstraintTypeId
{
[MethodImpl(MethodImplOptions.AggressiveInlining)]
get
{
return DistanceLimitTypeProcessor.BatchTypeId;
}
}
public static Type TypeProcessorType => typeof(DistanceLimitTypeProcessor);
public static TypeProcessor CreateTypeProcessor() => new DistanceLimitTypeProcessor();
public readonly void ApplyDescription(ref TypeBatch batch, int bundleIndex, int innerIndex)
{
Debug.Assert(MinimumDistance >= 0, "DistanceLimit.MinimumDistance must be nonnegative.");
Debug.Assert(MaximumDistance >= 0, "DistanceLimit.MaximumDistance must be nonnegative.");
Debug.Assert(MaximumDistance >= MinimumDistance, "DistanceLimit.MaximumDistance must be greater than or equal to DistanceLimit.MinimumDistance.");
ConstraintChecker.AssertValid(SpringSettings, nameof(DistanceLimit));
Debug.Assert(ConstraintTypeId == batch.TypeId, "The type batch passed to the description must match the description's expected type.");
ref var target = ref GetOffsetInstance(ref Buffer<DistanceLimitPrestepData>.Get(ref batch.PrestepData, bundleIndex), innerIndex);
Vector3Wide.WriteFirst(LocalOffsetA, ref target.LocalOffsetA);
Vector3Wide.WriteFirst(LocalOffsetB, ref target.LocalOffsetB);
GatherScatter.GetFirst(ref target.MinimumDistance) = MinimumDistance;
GatherScatter.GetFirst(ref target.MaximumDistance) = MaximumDistance;
SpringSettingsWide.WriteFirst(SpringSettings, ref target.SpringSettings);
}
public static void BuildDescription(ref TypeBatch batch, int bundleIndex, int innerIndex, out DistanceLimit description)
{
Debug.Assert(ConstraintTypeId == batch.TypeId, "The type batch passed to the description must match the description's expected type.");
ref var source = ref GetOffsetInstance(ref Buffer<DistanceLimitPrestepData>.Get(ref batch.PrestepData, bundleIndex), innerIndex);
Vector3Wide.ReadFirst(source.LocalOffsetA, out description.LocalOffsetA);
Vector3Wide.ReadFirst(source.LocalOffsetB, out description.LocalOffsetB);
description.MinimumDistance = GatherScatter.GetFirst(ref source.MinimumDistance);
description.MaximumDistance = GatherScatter.GetFirst(ref source.MaximumDistance);
SpringSettingsWide.ReadFirst(source.SpringSettings, out description.SpringSettings);
}
}
public struct DistanceLimitPrestepData
{
public Vector3Wide LocalOffsetA;
public Vector3Wide LocalOffsetB;
public Vector<float> MinimumDistance;
public Vector<float> MaximumDistance;
public SpringSettingsWide SpringSettings;
}
public struct DistanceLimitFunctions : ITwoBodyConstraintFunctions<DistanceLimitPrestepData, Vector<float>>
{
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static void ApplyImpulse(in Vector3Wide linearJacobianA, in Vector3Wide angularJacobianA, in Vector3Wide angularJacobianB, in BodyInertiaWide inertiaA, in BodyInertiaWide inertiaB,
in Vector<float> csi, ref BodyVelocityWide velocityA, ref BodyVelocityWide velocityB)
{
//TODO: Examine codegen quality for operators before generalizing.
var impulseScaledLinearJacobian = linearJacobianA * csi;
velocityA.Linear += impulseScaledLinearJacobian * inertiaA.InverseMass;
velocityB.Linear -= impulseScaledLinearJacobian * inertiaB.InverseMass;
velocityA.Angular += (angularJacobianA * csi) * inertiaA.InverseInertiaTensor;
velocityB.Angular += (angularJacobianB * csi) * inertiaB.InverseInertiaTensor;
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static void ComputeJacobians(
in Vector3Wide localOffsetA, in Vector3Wide positionA, in QuaternionWide orientationA, in Vector3Wide localOffsetB, in Vector3Wide positionB, in QuaternionWide orientationB,
in Vector<float> minimumDistance, in Vector<float> maximumDistance, out Vector<int> useMinimum, out Vector<float> distance, out Vector3Wide direction, out Vector3Wide angularJA, out Vector3Wide angularJB)
{
QuaternionWide.TransformWithoutOverlap(localOffsetA, orientationA, out var offsetA);
QuaternionWide.TransformWithoutOverlap(localOffsetB, orientationB, out var offsetB);
var anchorOffset = (offsetB - offsetA) + (positionB - positionA);
Vector3Wide.Length(anchorOffset, out distance);
//If the current distance is closer to the minimum, calibrate for the minimum. Otherwise, calibrate for the maximum.
useMinimum = Vector.LessThan(Vector.Abs(distance - minimumDistance), Vector.Abs(distance - maximumDistance));
var sign = Vector.ConditionalSelect(useMinimum, new Vector<float>(-1f), Vector<float>.One);
Vector3Wide.Scale(anchorOffset, sign / distance, out direction);
//If the distance is too short to extract a direction, use an arbitrary fallback.
var needFallback = Vector.LessThan(distance, new Vector<float>(1e-9f));
direction.X = Vector.ConditionalSelect(needFallback, Vector<float>.One, direction.X);
direction.Y = Vector.ConditionalSelect(needFallback, Vector<float>.Zero, direction.Y);
direction.Z = Vector.ConditionalSelect(needFallback, Vector<float>.Zero, direction.Z);
Vector3Wide.CrossWithoutOverlap(offsetA, direction, out angularJA);
Vector3Wide.CrossWithoutOverlap(direction, offsetB, out angularJB); //Note flip negation.
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static void WarmStart(in Vector3Wide positionA, in QuaternionWide orientationA, in BodyInertiaWide inertiaA, in Vector3Wide positionB, in QuaternionWide orientationB, in BodyInertiaWide inertiaB, ref DistanceLimitPrestepData prestep, ref Vector<float> accumulatedImpulses, ref BodyVelocityWide wsvA, ref BodyVelocityWide wsvB)
{
ComputeJacobians(prestep.LocalOffsetA, positionA, orientationA, prestep.LocalOffsetB, positionB, orientationB, prestep.MinimumDistance, prestep.MaximumDistance, out _, out _, out var direction, out var angularJA, out var angularJB);
ApplyImpulse(direction, angularJA, angularJB, inertiaA, inertiaB, accumulatedImpulses, ref wsvA, ref wsvB);
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static void Solve(in Vector3Wide positionA, in QuaternionWide orientationA, in BodyInertiaWide inertiaA, in Vector3Wide positionB, in QuaternionWide orientationB, in BodyInertiaWide inertiaB, float dt, float inverseDt, ref DistanceLimitPrestepData prestep, ref Vector<float> accumulatedImpulses, ref BodyVelocityWide wsvA, ref BodyVelocityWide wsvB)
{
ComputeJacobians(prestep.LocalOffsetA, positionA, orientationA, prestep.LocalOffsetB, positionB, orientationB, prestep.MinimumDistance, prestep.MaximumDistance, out var useMinimum, out var distance, out var direction, out var angularJA, out var angularJB);
//csi = projection.BiasImpulse - accumulatedImpulse * projection.SoftnessImpulseScale - (csiaLinear + csiaAngular + csibLinear + csibAngular);
Vector3Wide.Dot(wsvA.Linear, direction, out var linearCSVA);
Vector3Wide.Dot(wsvB.Linear, direction, out var negatedLinearCSVB);
Vector3Wide.Dot(wsvA.Angular, angularJA, out var angularCSVA);
Vector3Wide.Dot(wsvB.Angular, angularJB, out var angularCSVB);
var csv = linearCSVA - negatedLinearCSVB + angularCSVA + angularCSVB;
//The linear jacobian contributions are just a scalar multiplication by 1 since it's a unit length vector.
Symmetric3x3Wide.VectorSandwich(angularJA, inertiaA.InverseInertiaTensor, out var angularContributionA);
Symmetric3x3Wide.VectorSandwich(angularJB, inertiaB.InverseInertiaTensor, out var angularContributionB);
var inverseEffectiveMass = inertiaA.InverseMass + inertiaB.InverseMass + angularContributionA + angularContributionB;
SpringSettingsWide.ComputeSpringiness(prestep.SpringSettings, dt, out var positionErrorToVelocity, out var effectiveMassCFMScale, out var softnessImpulseScale);
var effectiveMass = effectiveMassCFMScale / inverseEffectiveMass;
var error = Vector.ConditionalSelect(useMinimum, prestep.MinimumDistance - distance, distance - prestep.MaximumDistance);
InequalityHelpers.ComputeBiasVelocity(error, positionErrorToVelocity, inverseDt, out var biasVelocity);
var csi = -accumulatedImpulses * softnessImpulseScale - effectiveMass * (csv - biasVelocity);
InequalityHelpers.ClampPositive(ref accumulatedImpulses, ref csi);
ApplyImpulse(direction, angularJA, angularJB, inertiaA, inertiaB, csi, ref wsvA, ref wsvB);
}
public static bool RequiresIncrementalSubstepUpdates => false;
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static void IncrementallyUpdateForSubstep(in Vector<float> dt, in BodyVelocityWide wsvA, in BodyVelocityWide wsvB, ref DistanceLimitPrestepData prestepData) { }
}
/// <summary>
/// Handles the solve iterations of a bunch of distance servos.
/// </summary>
public class DistanceLimitTypeProcessor : TwoBodyTypeProcessor<DistanceLimitPrestepData, Vector<float>, DistanceLimitFunctions, AccessAll, AccessAll, AccessAll, AccessAll>
{
public const int BatchTypeId = 34;
}
}