-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathNNmodel.py
131 lines (105 loc) · 4.52 KB
/
NNmodel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
# Packages and modules
import torch
import torch.nn as nn
import pytorch_lightning as pl
class NNModel(pl.LightningModule):
def __init__(self,
emb_dims,
no_of_cont,
lin_layer_sizes,
output_size,
emb_dropout,
lin_layer_dropouts,
loss_function,
learning_rate):
"""
Parameters
----------
emb_dims: list of two elements tuples
The list contains a two element tuple for each categorical feature. The first element tuple denotes
the number of unique values of the categorical feture. The second element tuple denotes the embedding
dimension to be used for the feature.
no_of_cont: int
Number of continuous features in the data.
lin_layer_sizes: list of int
The list contains the size of each linear layer. The length of the list is the total number of linear
layers in the NN.
output_size: int
The size of the final output.
emb_dropout: float
The dropout to be used after the embedding layers.
lin_layer_dropouts: list of floats
The dropouts to be used after each linear layer.
loss_function: function
Loss function to be used for the train, validation and test step.
learning_rate: float
Learning rate for the optimizer.
"""
super().__init__()
# Embedding layers
self.emb_layers = nn.ModuleList([nn.Embedding(x, y) for x, y in emb_dims])
# Number of embeddings
no_of_embs = sum([y for x, y in emb_dims])
self.no_of_embs = no_of_embs
self.no_of_cont = no_of_cont
# Linear Layers
first_lin_layer = nn.Linear(self.no_of_embs + self.no_of_cont, lin_layer_sizes[0])
self.lin_layers = nn.ModuleList(
[first_lin_layer] + [nn.Linear(lin_layer_sizes[i], lin_layer_sizes[i + 1]
) for i in range(len(lin_layer_sizes) - 1)])
for lin_layer in self.lin_layers:
nn.init.kaiming_normal_(lin_layer.weight.data)
# Output Layer
self.output_layer = nn.Linear(lin_layer_sizes[-1], output_size)
nn.init.kaiming_normal_(self.output_layer.weight.data)
# Batch Norm Layers
self.first_bn_layer = nn.BatchNorm1d(self.no_of_cont)
self.bn_layers = nn.ModuleList([nn.BatchNorm1d(size) for size in lin_layer_sizes])
# Dropout Layers
self.emb_dropout_layer = nn.Dropout(emb_dropout)
self.droput_layers = nn.ModuleList([nn.Dropout(size) for size in lin_layer_dropouts])
self.relu = nn.ReLU()
# Loss function
self.loss_function = loss_function
# Learning rate
self.learning_rate = learning_rate
def forward(self, batch):
# Embeds categorical data
if self.no_of_embs != 0:
x = [emb_layer(batch["cat_data"][:, i]) for i, emb_layer in enumerate(self.emb_layers)]
x = torch.cat(x, 1)
x = self.emb_dropout_layer(x)
# Embeds continuous data
if self.no_of_cont != 0:
normalized_cont_data = self.first_bn_layer(batch["cont_data"])
# Concatenation of categorical and continuous data after initialization
if self.no_of_embs != 0:
x = torch.cat([x, normalized_cont_data], 1)
else:
x = normalized_cont_data
# Hidden layers
for lin_layer, dropout_layer, bn_layer in zip(self.lin_layers, self.droput_layers, self.bn_layers):
x = self.relu(lin_layer(x))
x = bn_layer(x)
x = dropout_layer(x)
# Output layer
x = self.output_layer(x)
return x
def training_step(self, batch, idx):
logits = self.forward(batch)
loss = self.loss_function(logits, batch["target"])
self.log('train_loss', loss, sync_dist=False)
return loss
def validation_step(self, batch, idx):
logits = self.forward(batch)
loss = self.loss_function(logits, batch["target"])
self.log('val_loss', loss)
return loss
def test_step(self, batch, idx):
logits = self.forward(batch)
test_loss = self.loss_function(logits, batch['target'])
print(logits, batch["target"], test_loss)
self.log("test_loss", test_loss)
def configure_optimizers(self):
optimizer = torch.optim.AdamW(self.parameters(), lr=self.learning_rate)
return optimizer