-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpseudo_mask_generator.py
559 lines (461 loc) · 24.5 KB
/
pseudo_mask_generator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
'''
* Copyright (c) 2022, salesforce.com, inc.
* All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
* For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
'''
import argparse
import os
try:
import ruamel_yaml as yaml
except ModuleNotFoundError:
import ruamel.yaml as yaml
import numpy as np
import time
import datetime
import json
from pathlib import Path
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.transforms as T
import sys
sys.path.append("ALBEF/")
import torch.backends.cudnn as cudnn
from functools import partial
from ALBEF.models.vit import VisionTransformer
from ALBEF.models.xbert import BertConfig, BertModel
from ALBEF.models.tokenization_bert import BertTokenizer
from ALBEF import utils
from ALBEF.dataset import create_dataset, create_sampler, create_loader
import pickle
import cv2
from matplotlib import pyplot as plt
import matplotlib.patches as patches
from matplotlib.collections import PatchCollection
import copy
import math
import torch.optim as optim
from torch.autograd import Variable
class VL_Transformer_ITM(nn.Module):
def __init__(self,
text_encoder=None,
config_bert='',
img_size=384
):
super().__init__()
bert_config = BertConfig.from_json_file(config_bert)
self.visual_encoder = VisionTransformer(
img_size=img_size, patch_size=16, embed_dim=768, depth=12, num_heads=12,
mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6))
self.text_encoder = BertModel.from_pretrained(text_encoder, config=bert_config, add_pooling_layer=False)
self.itm_head = nn.Linear(768, 2)
def forward(self, image, text):
image_embeds = self.visual_encoder(image)
image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(image.device)
output = self.text_encoder(text.input_ids,
attention_mask=text.attention_mask,
encoder_hidden_states=image_embeds,
encoder_attention_mask=image_atts,
return_dict=True,
)
vl_embeddings = output.last_hidden_state[:, 0, :]
vl_output = self.itm_head(vl_embeddings)
return vl_output
class WSS_Net(nn.Module):
def __init__(self,input_dim):
super(WSS_Net, self).__init__()
self.conv1 = nn.Conv2d(input_dim, 128, kernel_size=3, stride=1, padding=1 )
self.bn1 = nn.BatchNorm2d(128)
self.conv2 = nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1 )
self.bn2 = nn.BatchNorm2d(128)
self.conv3 = nn.Conv2d(128, 128, kernel_size=1, stride=1, padding=0 )
self.bn3 = nn.BatchNorm2d(128)
def forward(self, x):
x = self.conv1(x)
x = F.relu(x)
x = self.bn1(x)
x = self.conv2(x)
x = F.relu(x)
x = self.bn2(x)
x = self.conv3(x)
x = self.bn3(x)
return x
def act_map_2_pseduo_gt(seg_map):
pseduo_gt = np.ones((seg_map.shape[0], seg_map.shape[1]))
pseduo_gt = np.uint8(255 * pseduo_gt)
h, w = seg_map.shape
shift = 5
cv2.rectangle(pseduo_gt, (shift,shift), (w-shift,h-shift), (0, 0, 0))
_, counts = np.unique(pseduo_gt, return_counts=True)
bg_count = counts[0]
fg_count = bg_count*1
seg_idx = np.where(seg_map > 0)
if len(seg_idx[0]) > 0 :
if len(seg_idx[0]) < fg_count:
total_pts = len(seg_idx[0])-1
else:
total_pts = fg_count
sample_pts = np.random.randint(len(seg_idx[0])-1, size=total_pts)
sample_x, sample_y = seg_idx[0][sample_pts], seg_idx[1][sample_pts]
pseduo_gt[sample_x,sample_y] = 8
cv2.circle(pseduo_gt,(w//2, h//2), 1, (8,8,8), -1)
else:
cv2.circle(pseduo_gt,(w//2, h//2), 5, (8,8,8), -1)
return pseduo_gt
def wss_pipeline(cropped_img, crop_act_map, file_name):
nChannel = 128
maxIter = 400
minLabels = 3
im = cropped_img.cpu().numpy()
im = im.transpose(1,2,0)
im = (im - im.min()) / (im.max() - im.min())
im = np.uint8(255 * im)
im = cv2.cvtColor(np.array(im), cv2.COLOR_RGB2BGR)
data = Variable(cropped_img.unsqueeze(0)).cuda()
pseduo_gt_mask = act_map_2_pseduo_gt(np.uint8(crop_act_map*255))
mask = pseduo_gt_mask.reshape(-1)
mask_inds = np.unique(mask)
mask_inds = np.delete( mask_inds, np.argwhere(mask_inds==255) )
inds_sim = torch.from_numpy( np.where( mask == 255 )[ 0 ] ) ##### Background idx
inds_scr = torch.from_numpy( np.where( mask != 255 )[ 0 ] ) ##### Foreground idx
target_scr = torch.from_numpy( mask.astype(np.int) )
inds_sim = inds_sim.cuda()
inds_scr = inds_scr.cuda()
target_scr = target_scr.cuda()
target_scr = Variable(target_scr)
minLabels = len(mask_inds)
# train
model = WSS_Net(data.size(1))
model.cuda()
model.train()
loss_fn = torch.nn.CrossEntropyLoss()
loss_fn_scr = torch.nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.25, momentum=0.9)
for batch_idx in range(maxIter):
optimizer.zero_grad()
output = model( data )[ 0 ]
output = output.permute( 1, 2, 0 ).contiguous().view( -1, nChannel )
_, target = torch.max( output, 1 )
im_target = target.data.cpu().numpy()
nLabels = len(np.unique(im_target))
loss = loss_fn(output[ inds_sim ], target[ inds_sim ]) + loss_fn_scr(output[ inds_scr ], target_scr[ inds_scr ]) #+ (lhpy + lhpz)
loss.backward()
optimizer.step()
if nLabels <= minLabels:
break
output = model( data )[ 0 ]
output = output.permute( 1, 2, 0 ).contiguous().view( -1, nChannel )
_, target = torch.max( output, 1 )
im_target = target.data.cpu().numpy()
im_instance_mask = im_target.reshape( im.shape[0], im.shape[1] ).astype( np.uint8 )
im_instance_mask[im_instance_mask !=8] = 0
return im_instance_mask
def net_normalized_act_map(total_act_map_obj):
sum_act_map_obj = 0
for i in range(len(total_act_map_obj)):
req_act_map = total_act_map_obj[i]
req_act_map = (req_act_map - req_act_map.min()) / (req_act_map.max() - req_act_map.min())
sum_act_map_obj = req_act_map+sum_act_map_obj
return sum_act_map_obj
def impaint_function(act_map_obj, img):
net_img_mean = img.mean()
act_map_obj = act_map_obj.detach().clone().squeeze().cuda()
act_map_obj = (act_map_obj - act_map_obj.min()) / (act_map_obj.max() - act_map_obj.min())
act_map_obj[act_map_obj < 0.5] = 0.0
act_map_obj[act_map_obj > 0.5] = 1.0
mask = act_map_obj
inv_mask = mask.detach().clone()
inv_mask[mask==0] = 1
inv_mask[mask==1] = 0
mask_img = mask*img
impaint = mask_img.detach().clone()
impaint[impaint!=0] = net_img_mean
inv_mask_img = inv_mask*img
net_img = inv_mask_img+impaint
return net_img
def seg_2_poly(instance_mask):
instance_mask = np.uint8(instance_mask)
instance_mask = cv2.GaussianBlur(instance_mask,(5,5),0)
contours, _ = cv2.findContours(instance_mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
segmentation = []
for contour in contours:
contour = np.flip(contour, axis=1)
if contour.size >= 6:
segmentation.append(contour.ravel().tolist())
return segmentation
def vis_det_act(image_, image_relevance, bbox, text, filename, output_dir, bbox_prop = None, instance_mask = None):
def show_cam_on_image(img, mask):
heatmap = cv2.applyColorMap(np.uint8(255 * mask), cv2.COLORMAP_JET)
heatmap = np.float32(heatmap) / 255
cam = heatmap + np.float32(img)
cam = cam / np.max(cam)
return cam
image_ = image_.unsqueeze(0)
image = F.interpolate(image_, size=(image_relevance.shape[-2],image_relevance.shape[-1]))
image = image.squeeze(0)
image = image.permute(1, 2, 0).data.cpu().numpy()
image = (image - image.min()) / (image.max() - image.min())
#vis = show_cam_on_image(image, image_relevance)
vis = np.uint8(255 * image)
vis = cv2.cvtColor(np.array(vis), cv2.COLOR_RGB2BGR)
fig, ax = plt.subplots()
ax.imshow(vis)
rect = patches.Rectangle((bbox[0], bbox[1]), bbox[2]-bbox[0], bbox[3]-bbox[1], linewidth=3, edgecolor='r', facecolor='none')
ax.add_patch(rect)
if bbox_prop is not None:
for bbp in bbox_prop:
rect = patches.Rectangle((bbp[0], bbp[1]), bbp[2]-bbp[0], bbp[3]-bbp[1], linewidth=1, edgecolor='black', facecolor='none')
ax.add_patch(rect)
plt.text(bbox[0]-5, bbox[1]-5, text, color='white', fontsize=15)
plt.axis('off')
if len(instance_mask) > 0:
for seg in instance_mask:
poly = np.array(seg).reshape((int(len(seg) / 2), 2))
polygons = patches.Polygon(poly)
p = PatchCollection([polygons], facecolor='r', linewidths=0, alpha=0.6)
ax.add_collection(p)
p = PatchCollection([polygons], facecolor='none', edgecolors='b', linewidths=0.5)
ax.add_collection(p)
if not os.path.isdir(os.path.join(output_dir+'vis')):
os.makedirs(os.path.join(output_dir+'vis'))
plt.savefig(os.path.join(output_dir+'vis', filename.split('.')[0]+'_{}.png'.format(text.replace('/', '_'))))
print("Saved Image with Box-level and Pixel-level Annotations in ", os.path.join(output_dir+'vis', filename.split('.')[0]+'_{}.png'.format(text.replace('/', '_'))))
def get_activation_map(output, model, image, text_input_mask, block_num, map_size, batch_index):
loss = output[1].sum()
image = image.unsqueeze(0)
text_input_mask = text_input_mask.unsqueeze(0)
model.zero_grad()
loss.backward(retain_graph=True)
with torch.no_grad():
mask = text_input_mask.view(text_input_mask.size(0),1,-1,1,1)
grads=model.text_encoder.base_model.base_model.encoder.layer[block_num].crossattention.self.get_attn_gradients()
cams=model.text_encoder.base_model.base_model.encoder.layer[block_num].crossattention.self.get_attention_map()
cams = cams[batch_index, :, :, 1:].reshape(image.size(0), 12, -1, map_size, map_size)
cams = cams * mask
grads = grads[batch_index, :, :, 1:].clamp(0).reshape(image.size(0), 12, -1, map_size, map_size) * mask
gradcam = cams * grads
gradcam = gradcam.mean(1)
return gradcam[0, :, :, :].cpu().detach()
def generate_pseudo_bbox(model, tokenizer, data_loader, object_name_dict, args, block_num, map_size, device):
num_image_without_proposals = 0
num_image = 0
metric_logger = utils.MetricLogger(delimiter=" ")
print_freq = 50
tokenized_dict = {}
for (k,v_list) in object_name_dict.items():
tokenized_v_list = []
for v in v_list:
value_tmp = tokenizer._tokenize(v)
value = ' '.join(value_tmp)
tokenized_v_list.append(value)
tokenized_dict[k] = tokenized_v_list
for batch_i, (images, text, proposal_paths) in enumerate(metric_logger.log_every(data_loader, print_freq, '')):
original_img = copy.deepcopy(images)
objects_dict = {} # key is the proposal_path
objects = []
for (i, proposal_path) in enumerate(proposal_paths):
wl = tokenizer._tokenize(text[i])
tokenizeded_text = ' '.join(wl)
tokenizeded_text = ' ' + tokenizeded_text + ' '
objects_for_one = []
# for every value token, see if there is an exact match
for (k, v_list) in tokenized_dict.items():
for v in v_list:
left_index = tokenizeded_text.find(' '+v+' ')
if left_index != -1:
space_count = tokenizeded_text[:(left_index+1)].count(' ')
objects_for_one.append((k,v, space_count, space_count+len(v.strip().split(' '))))
objects.append(objects_for_one)
########################################## Iterative Masking ##################################################
total_iter = 3
mask_dict = {}
bbox_dict = {}
box_cnt_thresh = 1
for cnt in range(total_iter):
image = images
image = image.to(device, non_blocking=True)
text_input = tokenizer(text, padding='longest', max_length=30, return_tensors="pt").to(device)
output = model(image, text_input)
impaint_img = []
for i, img in enumerate(image):
filename = proposal_paths[i].split('/')[-1]
im_h, im_w = img.shape[1], img.shape[2]
act_map = get_activation_map(output[i], model, img, text_input['attention_mask'][i], block_num, map_size, i)
list_bbox_act_map_obj = []
for (original_obj_name, replaced_obj_name, obj_i_left, obj_i_right) in objects[i]:
file_object = filename.split('.')[0]+"_"+original_obj_name
act_map_obj = act_map[obj_i_left]
if obj_i_right - obj_i_left > 1:
for obj_i in range(obj_i_left+1, obj_i_right):
act_map_obj += act_map[obj_i]
mask_act_map_obj = F.interpolate(act_map_obj.unsqueeze(0).unsqueeze(0), size=(im_h, im_w), mode='bilinear').detach().clone()
bbox_act_map_obj = F.interpolate(act_map_obj.unsqueeze(0).unsqueeze(0), size=(im_h, im_w)).detach().clone()
list_bbox_act_map_obj.append(bbox_act_map_obj)
if file_object not in mask_dict:
mask_act_map_obj = (mask_act_map_obj - mask_act_map_obj.min()) / (mask_act_map_obj.max() - mask_act_map_obj.min())
mask_act_map_obj_numpy = np.uint8(mask_act_map_obj.numpy().squeeze()*255)
mask_act_map_obj_numpy = cv2.GaussianBlur(mask_act_map_obj_numpy,(5,5),0)
_, mask_act_map_obj_numpy = cv2.threshold(mask_act_map_obj_numpy,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)
mask_act_map_obj_numpy[mask_act_map_obj_numpy==255] = 1
mask_act_map_obj = torch.from_numpy(mask_act_map_obj_numpy).unsqueeze(0).unsqueeze(0).float()
mask_dict[file_object] = [mask_act_map_obj]
bbox_dict[file_object] = [(bbox_act_map_obj - bbox_act_map_obj.min()) / (bbox_act_map_obj.max() - bbox_act_map_obj.min())]
elif file_object in mask_dict:
mask_act_map_obj = (mask_act_map_obj - mask_act_map_obj.min()) / (mask_act_map_obj.max() - mask_act_map_obj.min())
mask_act_map_obj_numpy = np.uint8(mask_act_map_obj.numpy().squeeze()*255)
mask_act_map_obj_numpy = cv2.GaussianBlur(mask_act_map_obj_numpy,(5,5),0)
_, mask_act_map_obj_numpy = cv2.threshold(mask_act_map_obj_numpy,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)
mask_act_map_obj_numpy[mask_act_map_obj_numpy==255] = 1
mask_act_map_obj = torch.from_numpy(mask_act_map_obj_numpy).unsqueeze(0).unsqueeze(0).float()
mask_dict[file_object].append(mask_act_map_obj)
if cnt < box_cnt_thresh:
bbox_dict[file_object].append((bbox_act_map_obj - bbox_act_map_obj.min()) / (bbox_act_map_obj.max() - bbox_act_map_obj.min()))
net_act_map_obj = net_normalized_act_map(list_bbox_act_map_obj)
if len(objects[i]) == 0:
impaint_img.append(img)
else:
impaint_img.append(impaint_function(net_act_map_obj, img))
images = torch.stack(impaint_img)
########################################## Proposal Read ##################################################
for i, img in enumerate(image):
filename = proposal_paths[i].split('/')[-1]
nearest_folder = proposal_paths[i].split('/')[-2]
_, file_extension = os.path.splitext(proposal_paths[i])
if file_extension == '':
proposal_addr = proposal_paths[i]+'.pkl'
info_addr = proposal_paths[i]+'_info.pkl'
else:
proposal_addr = proposal_paths[i].replace(file_extension,'.pkl')
info_addr = proposal_paths[i].replace(file_extension,'_info.pkl')
if not os.path.exists(proposal_addr):
num_image_without_proposals += 1
continue
initial_proposals = pickle.load(open(proposal_addr, 'rb'))
initial_information = pickle.load(open(info_addr, 'rb'))
im_h, im_w = initial_information['ori_shape'][:2]
proposals = []
for p in initial_proposals:
if p.size != 0:
proposals.extend(p)
if len(proposals) == 0:
num_image_without_proposals += 1
continue
proposals = np.stack(proposals, axis=0)
prop_boxes = proposals[:,0:4]
########################################## Best Proposal Selection ##################################################
num_image += 1
print("Processed " +str(num_image) + " images")
object_pseudo_list_per_image = []
for (original_obj_name, replaced_obj_name, obj_i_left, obj_i_right) in objects[i]:
file_object = filename.split('.')[0]+"_"+original_obj_name
act_map_obj = sum(bbox_dict[file_object])
act_map_obj = F.interpolate(act_map_obj, size=(im_h, im_w)).cpu().numpy()
act_map_obj = act_map_obj.squeeze()
instance_act_map_obj = sum(mask_dict[file_object])
instance_act_map_obj = F.interpolate(instance_act_map_obj, size=(im_h, im_w), mode='bilinear').cpu().numpy()
instance_act_map_obj = instance_act_map_obj.squeeze()
instance_act_map_obj[instance_act_map_obj > 0] = 1
score_max = -1
best_proposal = [0, 0, 0, 0]
act_map_obj = (act_map_obj - act_map_obj.min()) / (act_map_obj.max() - act_map_obj.min())
act_map_obj = np.uint8(act_map_obj*255)
act_map_obj = cv2.GaussianBlur(act_map_obj,(5,5),0)
_, act_map_obj = cv2.threshold(act_map_obj,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)
act_map_obj[act_map_obj==255] = 1
for bi, bb in enumerate(prop_boxes):
bb_tmp = np.copy(bb)
area = float(bb_tmp[2] - bb_tmp[0]) * float(bb_tmp[3] - bb_tmp[1])
if bb_tmp[0] < 0 or bb_tmp[1] < 0 or bb_tmp[2] > act_map_obj.shape[1] or bb_tmp[3] > act_map_obj.shape[0]:
continue
det_score = act_map_obj[int(bb_tmp[1]):int(bb_tmp[3]), int(bb_tmp[0]):int(bb_tmp[2])]
if len(det_score) == 0 or area == 0:
continue
det_score = det_score.sum() / math.sqrt(area)
if det_score > score_max:
score_max = det_score
best_proposal = [int(bb[0]), int(bb[1]), int(bb[2]), int(bb[3])]
########################################## Mask Generation ##################################################
crop_act_map = instance_act_map_obj[best_proposal[1]:best_proposal[3],best_proposal[0]:best_proposal[2]]
resize_transform = T.Resize((im_h, im_w))
resized_img = resize_transform(original_img[i])
cropped_img = resized_img[:, best_proposal[1]:best_proposal[3], best_proposal[0]:best_proposal[2]]
wss_output = wss_pipeline(cropped_img, crop_act_map, file_object)
inst_mask = np.zeros((im_h, im_w),np.uint8)
inst_mask[best_proposal[1]:best_proposal[3],best_proposal[0]:best_proposal[2]] = wss_output
poly_mask = seg_2_poly(inst_mask)
object_pseudo_list_per_image.append((original_obj_name, best_proposal, score_max, poly_mask))
vis_det_act(original_img[i], act_map_obj, best_proposal, original_obj_name, nearest_folder+'_'+filename, args.output_dir, prop_boxes, poly_mask)
if proposal_paths[i] not in objects_dict.keys():
objects_dict[proposal_paths[i]]= object_pseudo_list_per_image
else:
objects_dict[proposal_paths[i]].extend(object_pseudo_list_per_image)
for (k, v) in objects_dict.items():
file_name = k.split('/')[-1]
output_addr = os.path.join(args.output_dir, 'pseudo_labels', file_name)
_, file_extension = os.path.splitext(k)
if file_extension == '':
output_addr = output_addr+'_pseudo_label.pkl'
else:
output_addr = output_addr.replace(file_extension,'_pseudo_label.pkl')
if not os.path.isdir(os.path.dirname(output_addr)):
os.makedirs(os.path.dirname(output_addr))
with open(output_addr, 'wb') as fp:
pickle.dump(v, fp)
def main(args, config):
device = torch.device(args.device)
cudnn.benchmark = True
########################################## Dataset ##########################################
print("Creating dataset")
datasets = [create_dataset('pseudolabel', config, args.root_directory, args.bbox_proposal_addr)]
data_loader = create_loader(datasets, [None],batch_size=[config['batch_size']], num_workers=[4], is_trains=[True], collate_fns=[None])[0]
tokenizer = BertTokenizer.from_pretrained(args.text_encoder)
########################################## Model Initialization ##########################################
print("Creating model......")
bert_config_path = 'ALBEF/configs/config_bert.json'
model_path = args.model_path
img_size = 256
map_size = 16
model = VL_Transformer_ITM(text_encoder='bert-base-uncased', config_bert=bert_config_path, img_size=img_size)
model = model.to(device)
########################################## Load the Model ##########################################
checkpoint = torch.load(model_path, map_location='cpu')
if 'model' in checkpoint:
state_dict = checkpoint['model']
else:
state_dict = checkpoint
for key in list(state_dict.keys()): # adjust different names in pretrained checkpoint
if 'bert' in key:
encoder_key = key.replace('bert.', '')
state_dict[encoder_key] = state_dict[key]
del state_dict[key]
print("Start loading form the checkpoint......")
msg = model.load_state_dict(state_dict,strict=False)
assert len(msg.missing_keys) == 0
model.eval()
block_num = 8
model.text_encoder.base_model.base_model.encoder.layer[block_num].crossattention.self.save_attention = True
print("Loading object name dictionary....")
with open(args.object_dict, 'r') as fp:
object_name_dict = json.load(fp)
print("Start generating pseudo-mask annotation (box level + pixel level)...!!!")
start_time = time.time()
generate_pseudo_bbox(model, tokenizer, data_loader, object_name_dict, args, block_num, map_size, device)
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--config', default='ALBEF/configs/Pretrain.yaml')
parser.add_argument('--model_path', default='examples/ALBEF.pth')
parser.add_argument('--root_directory', default='datasets/')
parser.add_argument('--output_dir', default='pseudo_label_output/')
parser.add_argument('--object_dict', default='examples/object_vocab.json')
parser.add_argument('--bbox_proposal_addr', default='examples/proposals/')
parser.add_argument('--text_encoder', default='bert-base-uncased')
parser.add_argument('--device', default='cuda')
args = parser.parse_args()
config = yaml.load(open(args.config, 'r'), Loader=yaml.Loader)
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
yaml.dump(config, open(os.path.join(args.output_dir, 'config.yaml'), 'w'))
main(args, config)