-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathwheel_odom_pub.cpp
382 lines (305 loc) · 12.8 KB
/
wheel_odom_pub.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
// * This odometry information is based on wheel encoder tick counts.
// * Subscribe: ROS node that subscribes to the following topics:
// * left_front_ticks (std_msgs/Int32)
// * left_middle_ticks
// * left_rear_ticks
// * right_front_ticks
// * right_middle_ticks
// * right_rear_ticks
// * Publish: This node will publish to the following topics:
// * odom_data_euler : Position and velocity estimate. The orientation.z
// * variable is an Euler angle representing the yaw angle.
// * (nav_msgs/Odometry)
// * odom_data_quat : Position and velocity estimate. The orientation is
// * in quaternion format.
// * (nav_msgs/Odometry)
// Include various libraries
#include "ros/ros.h"
// #include "std_msgs/Int32.h"
#include "std_msgs/Int32.h"
#include <nav_msgs/Odometry.h>
#include <geometry_msgs/PoseStamped.h>
#include <tf2/LinearMath/Quaternion.h>
#include <tf2_ros/transform_broadcaster.h>
#include <cmath>
// Create odometry data publishers
ros::Publisher odom_data_pub;
ros::Publisher odom_data_pub_quat;
nav_msgs::Odometry odomNew;
nav_msgs::Odometry odomOld;
// Initial pose
const double initialX = 0.0;
const double initialY = 0.0;
const double initialTheta = 0.00000000001;
const double PI = 3.141592;
// Robot physical constants
const double TICKS_PER_REVOLUTION = 36124; // For reference purposes.
const double WHEEL_RADIUS = 0.11; // Wheel radius in meters
const double WHEEL_BASE = 0.89; // Center of left tire to center of right tire
const double TICKS_PER_METER = 52270; // Original was 2800
// Distance both wheels have traveled
double distanceLeft_Front= 0;
double distanceRight_Front= 0;
double distanceLeft_Middle = 0;
double distanceRight_Middle= 0;
double distanceLeft_Rear= 0;
double distanceRight_Rear= 0;
// Flag to see if initial pose has been received
bool initialPoseRecieved = false;
using namespace std;
// Get initial_2d message from either Rviz clicks or a manual pose publisher
void set_initial_2d(const geometry_msgs::PoseStamped &rvizClick) {
odomOld.pose.pose.position.x = rvizClick.pose.position.x;
odomOld.pose.pose.position.y = rvizClick.pose.position.y;
odomOld.pose.pose.orientation.z = rvizClick.pose.orientation.z;
initialPoseRecieved = true;
}
// Calculate the distance the left wheel has traveled since the last cycle
// void Calc_Left(const std_msgs::Int32& leftCount) {
// static int lastCountL = 0;
// if(leftCount.data != 0 && lastCountL != 0) {
// int leftTicks = (leftCount.data - lastCountL);
// if (leftTicks > 10000) {
// leftTicks = 0 - (2147483648 - leftTicks);
// }
// else if (leftTicks < -10000) {
// leftTicks = 2147483648-leftTicks;
// }
// else{}
// distanceLeft = leftTicks/TICKS_PER_METER;
// }
// lastCountL = leftCount.data;
// }
void Calc_Left_Front(const std_msgs::Int32& leftCountFront) {
static int lastCountLF = 0;
if(leftCountFront.data != 0 && lastCountLF != 0) {
int frontleftTicks = (leftCountFront.data - lastCountLF);
if (frontleftTicks > 10000) {
frontleftTicks = 0 - (2147483648 - frontleftTicks);
}
else if (frontleftTicks < -10000) {
frontleftTicks = 2147483648-frontleftTicks;
}
else{}
distanceLeft_Front = frontleftTicks/TICKS_PER_METER;
}
lastCountLF = leftCountFront.data;
}
void Calc_Left_Middle(const std_msgs::Int32& leftCountMiddle) {
static int lastCountLM = 0;
if(leftCountMiddle.data != 0 && lastCountLM != 0) {
int middleleftTicks = (leftCountMiddle.data - lastCountLM);
if (middleleftTicks > 10000) {
middleleftTicks = 0 - (2147483648 - middleleftTicks);
}
else if (middleleftTicks < -10000) {
middleleftTicks = 2147483648-middleleftTicks;
}
else{}
distanceLeft_Middle = middleleftTicks/TICKS_PER_METER;
}
lastCountLM = leftCountMiddle.data;
}
void Calc_Left_Rear(const std_msgs::Int32& leftCountRear) {
static int lastCountLR = 0;
if(leftCountRear.data != 0 && lastCountLR != 0) {
int rearleftTicks = (leftCountRear.data - lastCountLR);
if (rearleftTicks > 10000) {
rearleftTicks = 0 - (2147483648 - rearleftTicks);
}
else if (rearleftTicks < -10000) {
rearleftTicks = 2147483648-rearleftTicks;
}
else{}
distanceLeft_Rear = rearleftTicks/TICKS_PER_METER;
}
lastCountLR = leftCountRear.data;
}
void Calc_Right_Front(const std_msgs::Int32& rightCountFront) {
static int lastCountLF = 0;
if(rightCountFront.data != 0 && lastCountLF != 0) {
int frontrightTicks = (rightCountFront.data - lastCountLF);
if (frontrightTicks > 10000) {
frontrightTicks = 0 - (2147483648 - frontrightTicks);
}
else if (frontrightTicks < -10000) {
frontrightTicks = 2147483648-frontrightTicks;
}
else{}
distanceRight_Front = frontrightTicks/TICKS_PER_METER;
}
lastCountLF = rightCountFront.data;
}
void Calc_Right_Middle(const std_msgs::Int32& rightCountMiddle) {
static int lastCountLM = 0;
if(rightCountMiddle.data != 0 && lastCountLM != 0) {
int middlerightTicks = (rightCountMiddle.data - lastCountLM);
if (middlerightTicks > 10000) {
middlerightTicks = 0 - (2147483648 - middlerightTicks);
}
else if (middlerightTicks < -10000) {
middlerightTicks = 2147483648-middlerightTicks;
}
else{}
distanceRight_Middle = middlerightTicks/TICKS_PER_METER;
}
lastCountLM = rightCountMiddle.data;
}
void Calc_Right_Rear(const std_msgs::Int32& rightCountRear) {
static int lastCountLR = 0;
if(rightCountRear.data != 0 && lastCountLR != 0) {
int rearrightTicks = (rightCountRear.data - lastCountLR);
if (rearrightTicks > 10000) {
rearrightTicks = 0 - (2147483648 - rearrightTicks);
}
else if (rearrightTicks < -10000) {
rearrightTicks = 2147483648-rearrightTicks;
}
else{}
distanceRight_Rear = rearrightTicks/TICKS_PER_METER;
}
lastCountLR = rightCountRear.data;
}
// Calculate the distance the right wheel has traveled since the last cycle
// void Calc_Right(const std_msgs::Int32& rightCount) {
// static int lastCountR = 0;
// if(rightCount.data != 0 && lastCountR != 0) {
// int rightTicks = rightCount.data - lastCountR;
// if (rightTicks > 10000) {
// distanceRight = (0 - (2147483648 - distanceRight))/TICKS_PER_METER;
// }
// else if (rightTicks < -10000) {
// rightTicks = 2147483648 - rightTicks;
// }
// else{}
// distanceRight = rightTicks/TICKS_PER_METER;
// }
// lastCountR = rightCount.data;
// }
// Publish a nav_msgs::Odometry message in quaternion format
void publish_quat() {
tf2::Quaternion q;
q.setRPY(0, 0, odomNew.pose.pose.orientation.z);
nav_msgs::Odometry quatOdom;
quatOdom.header.stamp = odomNew.header.stamp;
quatOdom.header.frame_id = "odom";
quatOdom.child_frame_id = "base_link";
quatOdom.pose.pose.position.x = odomNew.pose.pose.position.x;
quatOdom.pose.pose.position.y = odomNew.pose.pose.position.y;
quatOdom.pose.pose.position.z = odomNew.pose.pose.position.z;
quatOdom.pose.pose.orientation.x = q.x();
quatOdom.pose.pose.orientation.y = q.y();
quatOdom.pose.pose.orientation.z = q.z();
quatOdom.pose.pose.orientation.w = q.w();
quatOdom.twist.twist.linear.x = odomNew.twist.twist.linear.x;
quatOdom.twist.twist.linear.y = odomNew.twist.twist.linear.y;
quatOdom.twist.twist.linear.z = odomNew.twist.twist.linear.z;
quatOdom.twist.twist.angular.x = odomNew.twist.twist.angular.x;
quatOdom.twist.twist.angular.y = odomNew.twist.twist.angular.y;
quatOdom.twist.twist.angular.z = odomNew.twist.twist.angular.z;
for(int i = 0; i<36; i++) {
if(i == 0 || i == 7 || i == 14) {
quatOdom.pose.covariance[i] = .01;
}
else if (i == 21 || i == 28 || i== 35) {
quatOdom.pose.covariance[i] += 0.1;
}
else {
quatOdom.pose.covariance[i] = 0;
}
}
odom_data_pub_quat.publish(quatOdom);
}
// Update odometry information
void update_odom() {
// Calculate the average distance
// double cycleDistance = (distanceRight + distanceLeft) / 2;
double cycleDistance = (distanceRight_Front +distanceRight_Middle + distanceRight_Rear + distanceLeft_Front + distanceLeft_Middle + distanceLeft_Rear) / 6;
double leftDistance = (distanceLeft_Front + distanceLeft_Middle + distanceLeft_Rear)/3 ;
double rightDistance = (distanceRight_Front + distanceRight_Middle + distanceRight_Rear)/3;
ROS_INFO("right_middle: %f",rightDistance);
ROS_INFO("left_middle: %f",leftDistance);
// Calculate the number of radians the robot has turned since the last cycle
// double cycleAngle = asin((distanceRight_Middle-distanceLeft_Middle)/WHEEL_BASE);
double cycleAngle = asin((rightDistance-leftDistance)/WHEEL_BASE);
// Average angle during the last cycle
double avgAngle = cycleAngle/2 + odomOld.pose.pose.orientation.z;
if (avgAngle > PI) {
avgAngle -= 2*PI;
}
else if (avgAngle < -PI) {
avgAngle += 2*PI;
}
else{}
// Calculate the new pose (x, y, and theta)
odomNew.pose.pose.position.x = odomOld.pose.pose.position.x + cos(avgAngle)*cycleDistance;
odomNew.pose.pose.position.y = odomOld.pose.pose.position.y + sin(avgAngle)*cycleDistance;
odomNew.pose.pose.orientation.z = cycleAngle + odomOld.pose.pose.orientation.z;
// Prevent lockup from a single bad cycle
if (isnan(odomNew.pose.pose.position.x) || isnan(odomNew.pose.pose.position.y)
|| isnan(odomNew.pose.pose.position.z)) {
odomNew.pose.pose.position.x = odomOld.pose.pose.position.x;
odomNew.pose.pose.position.y = odomOld.pose.pose.position.y;
odomNew.pose.pose.orientation.z = odomOld.pose.pose.orientation.z;
}
// Make sure theta stays in the correct range
if (odomNew.pose.pose.orientation.z > PI) {
odomNew.pose.pose.orientation.z -= 2 * PI;
}
else if (odomNew.pose.pose.orientation.z < -PI) {
odomNew.pose.pose.orientation.z += 2 * PI;
}
else{}
// Compute the velocity
odomNew.header.stamp = ros::Time::now();
odomNew.twist.twist.linear.x = cycleDistance/(odomNew.header.stamp.toSec() - odomOld.header.stamp.toSec());
odomNew.twist.twist.angular.z = cycleAngle/(odomNew.header.stamp.toSec() - odomOld.header.stamp.toSec());
// Save the pose data for the next cycle
odomOld.pose.pose.position.x = odomNew.pose.pose.position.x;
odomOld.pose.pose.position.y = odomNew.pose.pose.position.y;
odomOld.pose.pose.orientation.z = odomNew.pose.pose.orientation.z;
odomOld.header.stamp = odomNew.header.stamp;
// Publish the odometry message
odom_data_pub.publish(odomNew);
}
int main(int argc, char **argv) {
// Set the data fields of the odometry message
odomNew.header.frame_id = "odom";
odomNew.pose.pose.position.z = 0;
odomNew.pose.pose.orientation.x = 0;
odomNew.pose.pose.orientation.y = 0;
odomNew.twist.twist.linear.x = 0;
odomNew.twist.twist.linear.y = 0;
odomNew.twist.twist.linear.z = 0;
odomNew.twist.twist.angular.x = 0;
odomNew.twist.twist.angular.y = 0;
odomNew.twist.twist.angular.z = 0;
odomOld.pose.pose.position.x = initialX;
odomOld.pose.pose.position.y = initialY;
odomOld.pose.pose.orientation.z = initialTheta;
// Launch ROS and create a node
ros::init(argc, argv, "wheel_odom_pub");
ros::NodeHandle node;
// Subscribe to ROS topics
// ros::Subscriber subForRightCounts = node.subscribe("right_ticks", 100, Calc_Right, ros::TransportHints().tcpNoDelay());
// ros::Subscriber subForLeftCounts = node.subscribe("left_ticks", 100, Calc_Left, ros::TransportHints().tcpNoDelay());
ros::Subscriber subForLeftFrontCounts = node.subscribe("left_front_ticks", 100, Calc_Left_Front, ros::TransportHints().tcpNoDelay());
ros::Subscriber subForLeftMiddleCounts = node.subscribe("left_middle_ticks", 100, Calc_Left_Middle, ros::TransportHints().tcpNoDelay());
ros::Subscriber subForLeftRearCounts = node.subscribe("left_rear_ticks", 100, Calc_Left_Rear, ros::TransportHints().tcpNoDelay());
ros::Subscriber subForRghtFrontCounts = node.subscribe("right_front_ticks", 100, Calc_Right_Front, ros::TransportHints().tcpNoDelay());
ros::Subscriber subForRightMiddleCounts = node.subscribe("right_middle_ticks", 100, Calc_Right_Middle, ros::TransportHints().tcpNoDelay());
ros::Subscriber subForRightRearCounts = node.subscribe("right_rear_ticks", 100, Calc_Right_Rear, ros::TransportHints().tcpNoDelay());
ros::Subscriber subInitialPose = node.subscribe("initial_2d", 1, set_initial_2d);
// Publisher of simple odom message where orientation.z is an euler angle
odom_data_pub = node.advertise<nav_msgs::Odometry>("odom_data_euler", 100);
// Publisher of full odom message where orientation is quaternion
odom_data_pub_quat = node.advertise<nav_msgs::Odometry>("odom_data_quat", 100);
ros::Rate loop_rate(3);
while(ros::ok()) {
update_odom();
publish_quat();
ros::spinOnce();
loop_rate.sleep();
}
return 0;
}