-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathdata_helpers.py
336 lines (301 loc) · 12.5 KB
/
data_helpers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
#!usr/bin/python
# -*- coding:utf-8 -*-
"""
Construct a Data generator.
"""
import numpy as np
from tqdm import tqdm
import os
class BatchGenerator(object):
""" Construct a Data generator. The input X, y should be ndarray or list like type.
Example:
Data_train = BatchGenerator(X=X_train_all, y=y_train_all, shuffle=True)
Data_test = BatchGenerator(X=X_test_all, y=y_test_all, shuffle=False)
X = Data_train.X
y = Data_train.y
or:
X_batch, y_batch = Data_train.next_batch(batch_size)
"""
def __init__(self, X, y, shuffle=False):
if type(X) != np.ndarray:
X = np.asarray(X)
if type(y) != np.ndarray:
y = np.asarray(y)
self._X = X
self._y = y
self._epochs_completed = 0
self._index_in_epoch = 0
self._number_examples = self._X.shape[0]
self._shuffle = shuffle
if self._shuffle:
new_index = np.random.permutation(self._number_examples)
self._X = self._X[new_index]
self._y = self._y[new_index]
@property
def X(self):
return self._X
@property
def y(self):
return self._y
@property
def num_examples(self):
return self._number_examples
@property
def epochs_completed(self):
return self._epochs_completed
def next_batch(self, batch_size):
""" Return the next 'batch_size' examples from this data set."""
start = self._index_in_epoch
self._index_in_epoch += batch_size
if self._index_in_epoch > self._number_examples:
# finished epoch
self._epochs_completed += 1
# Shuffle the data
if self._shuffle:
new_index = np.random.permutation(self._number_examples)
self._X = self._X[new_index]
self._y = self._y[new_index]
start = 0
self._index_in_epoch = batch_size
assert batch_size <= self._number_examples
end = self._index_in_epoch
return self._X[start:end], self._y[start:end]
def to_categorical(topics):
"""把所有的topic id 转为 0,1形式。
Args:
topics: n_sample 个 lists, 问题的话题标签。每个list对应一个问题,topic个数不定。
return:
y: ndarray, shape=(sample, n_class), 其中 n_class = 1999.
Example:
>>> y_batch = to_categorical(topic_batch)
>>> print(y_batch.shape)
>>> (10, 1999)
"""
n_sample = len(topics)
y = np.zeros(shape=(n_sample, 1104))
for i in range(n_sample):
topic_index = topics[i]
y[i, topic_index] = 1
return y
def pad_X30(words, max_len=30):
"""把 word_ids 整理成固定长度。
"""
words_len = len(words)
words = np.asarray(words)
if words_len == max_len:
return words
if words_len > max_len:
return words[:max_len]
return np.hstack([words, np.zeros(max_len-words_len, dtype=int)])
def pad_X50(words, max_len=50):
"""把 word_ids 整理成固定长度。
"""
words_len = len(words)
words = np.asarray(words)
if words_len == max_len:
return words
if words_len > max_len:
return words[:max_len]
return np.hstack([words, np.zeros(max_len-words_len, dtype=int)])
def pad_X52(words, max_len=52):
"""把 word_ids 整理成固定长度。
"""
words_len = len(words)
words = np.asarray(words)
if words_len == max_len:
return words
if words_len > max_len:
return words[:max_len]
return np.hstack([words, np.zeros(max_len-words_len, dtype=int)])
def pad_X150(words, max_len=150):
"""把 word_ids 整理成固定长度。
"""
words_len = len(words)
words = np.asarray(words)
if words_len == max_len:
return words
if words_len > max_len:
return words[:max_len]
return np.hstack([words, np.zeros(max_len-words_len, dtype=int)])
def pad_X180(words, max_len=180):
"""把 word_ids 整理成固定长度。
"""
words_len = len(words)
words = np.asarray(words)
if words_len == max_len:
return words
if words_len > max_len:
return words[:max_len]
return np.hstack([words, np.zeros(max_len-words_len, dtype=int)])
def pad_X300(words, max_len=300):
"""把 word_ids 整理成固定长度。
"""
words_len = len(words)
words = np.asarray(words)
if words_len == max_len:
return words
if words_len > max_len:
return words[:max_len]
return np.hstack([words, np.zeros(max_len-words_len, dtype=int)])
def wd_cut_docs(words_id, max_len=30):
"""
把 doc 切割成句子。如果句子长度超过 max_len, 将句子按照最长 max_len切割成多个句子。
Args:
words_id: list or np.array, 整个文档的词对应的 id,[ 2336, 1468, 69, 49241, 68, 5 ... ]
max_len: 切割后最长的句子长度。
Returns:
segs: list of list,每个元素为一个list,即一个句子。 每个元素list包含多个id.
"""
if type(words_id) is np.ndarray:
words_id = words_id.tolist()
if type(words_id) is not list:
print('Type error! the words_id should be list or numpy.ndarray')
set_splits = set([5, 6, 50]) # 切割符号所对应的id
ws_len = len(words_id)
cut_index = list(filter(lambda i: words_id[i] in set_splits, range(len(words_id))))
segs = list() # 分割之后的句子
if len(cut_index) == 0: # 如果没有切割符号
seg_len = len(words_id)
if seg_len > max_len: # 如果超长,切割
for start in range(0, seg_len, max_len):
end = min(seg_len, start+max_len)
segs.append(words_id[start:end])
else: # 否则,整个句子返回
segs.append(words_id)
return segs
if cut_index[-1] != ws_len - 1: # 最后一个不是切割符号
cut_index = cut_index + [ws_len-1]
cut_index = np.asarray(cut_index) + 1
cut_index = cut_index.tolist()
start = [0] + cut_index[:-1]
end = cut_index
cut_indexs = zip(start, end)
for index in cut_indexs:
if index[1] == index[0]: # 1.如果第一个就是分割符号,去掉
continue
seg_len = index[1] - index[0]
if seg_len == 1: # 2.如果只有一个词
if words_id[index[0]] not in set_splits: # 并且不是分隔符
segs.append([words_id[index[0]]]) # 那么添加
continue # 否则丢弃
if seg_len > max_len: # 3.如果超长,切割
for start in range(index[0], index[1], max_len):
end = min(index[1], start+max_len)
segs.append(words_id[start:end])
else:
segs.append(words_id[index[0]:index[1]]) # 4.添加序列
return segs
def wd_pad_cut_docs(words_id, doc_len=10, sent_len=30):
"""把 doc 切割成句子,并 padding 成固定个句子数,每个句子长度也固定为 sent_len.
Args:
words_id: list or np.array, 整个文档的词对应的 id,[ 2336, 1468, 69, 49241, 68, 5 ... ]
doc_len: int, 每个文档的句子数,超过 doc_len 的丢弃;少于 doc_len 的补全。
sent_len: int, 每个句子的最大长度, 不足 sent_len 的使用 0 (id for 'UNKNOWN')进行补全。
Returns:
segs: np.adarray, shape=[doc_len, sent_len].
"""
segs4doc = wd_cut_docs(words_id, max_len=sent_len)
segs4doc = np.asarray(list(map(pad_X30, segs4doc))) # 每一部分都进行补齐
segs_num = segs4doc.shape[0] # 当前句子数
if segs_num >= doc_len: # 如果句子数够了
return segs4doc[:doc_len, :]
if segs_num == 0:
return np.zeros(shape=(doc_len, sent_len), dtype=int)
segs4doc = np.vstack([segs4doc, np.zeros(shape=(doc_len-segs_num, sent_len), dtype=int)])
return segs4doc
def ch_cut_docs(chs_id, max_len=52):
"""
把 doc 切割成句子。如果句子长度超过 max_len, 将句子按照最长 max_len切割成多个句子。
Args:
chs_id: list or np.array, 整个文档的字对应的 id,[ 2336, 1468, 69, 49241, 68, 5 ... ]
max_len: 切割后最长的句子长度。
Returns:
segs: list of list,每个元素为一个list,即一个句子。 每个元素list包含多个id.
"""
if type(chs_id) is np.ndarray:
chs_id = chs_id.tolist()
if type(chs_id) is not list:
print('Type error! the chs_id should be list or numpy.ndarray')
set_splits = set([8, 14, 77]) # 切割符号所对应的id
chs_len = len(chs_id)
cut_index = list(filter(lambda i: chs_id[i] in set_splits, range(len(chs_id))))
segs = list() # 分割之后的句子
if len(cut_index) == 0: # 如果没有切割符号
seg_len = len(chs_id)
if seg_len > max_len: # 如果超长,切割
for start in range(0, seg_len, max_len):
end = min(seg_len, start+max_len)
segs.append(chs_id[start:end])
else: # 否则,整个句子返回
segs.append(chs_id)
return segs
if cut_index[-1] != chs_len - 1: # 最后一个不是切割符号
cut_index = cut_index + [chs_len-1]
cut_index = np.asarray(cut_index) + 1
cut_index = cut_index.tolist()
start = [0] + cut_index[:-1]
end = cut_index
cut_indexs = zip(start, end)
for index in cut_indexs:
if index[1] == index[0]: # 1.如果第一个就是分割符号,去掉
continue
seg_len = index[1] - index[0]
if seg_len == 1: # 2.如果只有一个词
if chs_id[index[0]] not in set_splits: # 并且不是分隔符
segs.append([chs_id[index[0]]]) # 那么添加
continue # 否则丢弃
if seg_len > max_len: # 3.如果超长,切割
for start in range(index[0], index[1], max_len):
end = min(index[1], start+max_len)
segs.append(chs_id[start:end])
else:
segs.append(chs_id[index[0]:index[1]]) # 4.添加序列
return segs
def ch_pad_cut_docs(chs_id, doc_len=10, sent_len=52):
"""把 doc 切割成句子,并 padding 成固定个句子数,每个句子长度也固定为 sent_len.
Args:
chs_id: list or np.array, 整个文档的词对应的 id,[ 2336, 1468, 69, 49241, 68, 5 ... ]
doc_len: int, 每个文档的句子数,超过 doc_len 的丢弃;少于 doc_len 的补全。
sent_len: int, 每个句子的最大长度, 不足 sent_len 的使用 0 (id for 'UNKNOWN')进行补全。
Returns:
segs: np.adarray, shape=[doc_len, sent_len].
"""
segs4doc = ch_cut_docs(chs_id, max_len=sent_len)
segs4doc = np.asarray(list(map(pad_X52, segs4doc))) # 每一部分都进行补齐
segs_num = segs4doc.shape[0] # 当前句子数
if segs_num >= doc_len: # 如果句子数够了
return segs4doc[:doc_len, :]
if segs_num == 0:
return np.zeros(shape=(doc_len, sent_len), dtype=int)
segs4doc = np.vstack([segs4doc, np.zeros(shape=(doc_len-segs_num, sent_len), dtype=int)])
return segs4doc
def train_batch(X, y, batch_path, batch_size=128):
"""对训练集打batch."""
if not os.path.exists(batch_path):
os.makedirs(batch_path)
sample_num = len(X)
batch_num = 0
for start in tqdm(range(0, sample_num, batch_size)):
end = min(start + batch_size, sample_num)
batch_name = batch_path + str(batch_num) + '.npz'
X_batch = X[start:end]
y_batch = y[start:end]
# np.savez 保存多个数组
# np.save 保存单个数组
np.savez(batch_name, X=X_batch, y=y_batch)
batch_num += 1
print('Finished, batch_num=%d' % (batch_num+1))
def eval_batch(X, batch_path, batch_size=128):
"""对测试数据打batch."""
if not os.path.exists(batch_path):
os.makedirs(batch_path)
sample_num = len(X)
print('sample_num=%d' % sample_num)
batch_num = 0
for start in tqdm(range(0, sample_num, batch_size)):
end = min(start + batch_size, sample_num)
batch_name = batch_path + str(batch_num) + '.npy'
X_batch = X[start:end]
np.save(batch_name, X_batch)
batch_num += 1
print('Finished, batch_num=%d' % (batch_num+1))