forked from zhengyima/mnist-classification
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathknn.py
169 lines (127 loc) · 5.51 KB
/
knn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
from __future__ import print_function
import os
# third-party library
import torch
import torch.nn as nn
import torch.utils.data as Data
import torchvision
import time
# import matplotlib.pyplot as plt
localtime = time.asctime( time.localtime(time.time()) )
print("本地时间为 :", localtime)
# torch.manual_seed(1) # reproducible
# Hyper Parameters
EPOCH = 1 # train the training data n times, to save time, we just train 1 epoch
BATCH_SIZE = 50
LR = 0.001 # learning rate
DOWNLOAD_MNIST = False
# Mnist digits dataset
if not(os.path.exists('./mnist/')) or not os.listdir('./mnist/'):
# not mnist dir or mnist is empyt dir
DOWNLOAD_MNIST = True
train_data = torchvision.datasets.MNIST(
root='./mnist/',
train=True, # this is training data
transform=torchvision.transforms.ToTensor(), # Converts a PIL.Image or numpy.ndarray to
# torch.FloatTensor of shape (C x H x W) and normalize in the range [0.0, 1.0]
download=DOWNLOAD_MNIST,
)
# plot one example
print(train_data.train_data.size()) # (60000, 28, 28)
print(train_data.train_labels.size()) # (60000)
# plt.imshow(train_data.train_data[0].numpy(), cmap='gray')
# plt.title('%i' % train_data.train_labels[0])
# plt.show()
# pick 2000 samples to speed up testing
train_data = torchvision.datasets.MNIST(root='./mnist/', train=True)
train_x = torch.unsqueeze(train_data.train_data, dim=1).type(torch.FloatTensor)[:60000]/255. # shape from (2000, 28, 28) to (2000, 1, 28, 28), value in range(0,1)
train_y = train_data.train_labels[:60000]
# pick 2000 samples to speed up testing
test_data = torchvision.datasets.MNIST(root='./mnist/', train=False)
test_x = torch.unsqueeze(test_data.test_data, dim=1).type(torch.FloatTensor)[:2000]/255. # shape from (2000, 28, 28) to (2000, 1, 28, 28), value in range(0,1)
test_y = test_data.test_labels[:2000]
print(train_x.size(),train_y.size(),test_x.size(),test_y.size())
train_x = train_x.view(-1,28*28)
test_x = test_x.view(-1,28*28)
# K-Nearest Neighbor Classification
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import classification_report
from sklearn import datasets
from skimage import exposure
# import matplotlib.pyplot as plt
import numpy as np
# import imutils
# import cv2
# load the MNIST digits dataset
# mnist = datasets.load_digits()
# print(len(np.array(mnist.data)[0]))
# Training and testing split,
# 75% for training and 25% for testing
# print(len(mnist))
# (trainData, testData, trainLabels, testLabels) = train_test_split(np.array(mnist.data), mnist.target, test_size=0.25, random_state=42)
# take 10% of the training data and use that for validation
# (trainData, valData, trainLabels, valLabels) = train_test_split(trainData, trainLabels, test_size=0.1, random_state=84)
trainData = np.array(train_x)
testData = np.array(test_x)
trainLabels = np.array(train_y)
testLabels = np.array(test_y)
valData = testData
valLabels = testLabels
# Checking sizes of each data split
print("training data points: {}".format(len(trainLabels)))
print("validation data points: {}".format(len(valLabels)))
print("testing data points: {}".format(len(testLabels)))
# initialize the values of k for our k-Nearest Neighbor classifier along with the
# list of accuracies for each value of k
kVals = range(1, 30, 2)
accuracies = []
# loop over kVals
for k in range(1, 30, 2):
# train the classifier with the current value of `k`
model = KNeighborsClassifier(n_neighbors=k)
model.fit(trainData, trainLabels)
# evaluate the model and print the accuracies list
score = model.score(valData, valLabels)
print("k=%d, accuracy=%.2f%%" % (k, score * 100))
accuracies.append(score)
localtime = time.asctime( time.localtime(time.time()) )
print("本地时间为 :", localtime)
# largest accuracy
# np.argmax returns the indices of the maximum values along an axis
i = np.argmax(accuracies)
print("k=%d achieved highest accuracy of %.2f%% on validation data" % (kVals[i],
accuracies[i] * 100))
# Now that I know the best value of k, re-train the classifier
model = KNeighborsClassifier(n_neighbors=kVals[i])
model.fit(trainData, trainLabels)
# Predict labels for the test set
predictions = model.predict(testData)
# Evaluate performance of model for each of the digits
print("EVALUATION ON TESTING DATA")
print(classification_report(testLabels, predictions))
# some indices are classified correctly 100% of the time (precision = 1)
# high accuracy (98%)
# check predictions against images
# loop over a few random digits
image = testData
j = 0
for i in np.random.randint(0, high=len(testLabels), size=(24,)):
# np.random.randint(low, high=None, size=None, dtype='l')
prediction = model.predict(image)[i]
image0 = image[i].reshape((8, 8)).astype("uint8")
image0 = exposure.rescale_intensity(image0, out_range=(0, 255))
# plt.subplot(4,6,j+1)
# plt.title(str(prediction))
# plt.imshow(image0,cmap='gray')
# plt.axis('off')
# convert the image for a 64-dim array to an 8 x 8 image compatible with OpenCV,
# then resize it to 32 x 32 pixels for better visualization
#image0 = imutils.resize(image[0], width=32, inter=cv2.INTER_CUBIC)
j = j+1
# show the prediction
# print("I think that digit is: {}".format(prediction))
# print('image0 is ',image0)
# cv2.imshow("Image", image0)
# cv2.waitKey(0) # press enter to view each one!
# plt.show()