-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathrun_lib.py
413 lines (358 loc) · 18.3 KB
/
run_lib.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
# coding=utf-8
# Copyright 2020 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: skip-file
"""Training and evaluation for score-based generative models. """
import gc
import io
import os
import time
import numpy as np
import tensorflow as tf
import tensorflow_gan as tfgan
import logging
# Keep the import below for registering all model definitions
from models import ddpm, ncsnv2, ncsnpp
import losses
import sampling
from models import utils as mutils
from models.ema import ExponentialMovingAverage
import datasets
import evaluation
import likelihood
import sde_lib
from absl import flags
import torch
from torch.utils import tensorboard
from torchvision.utils import make_grid, save_image
from utils import save_checkpoint, restore_checkpoint
FLAGS = flags.FLAGS
def train(config, workdir):
"""Runs the training pipeline.
Args:
config: Configuration to use.
workdir: Working directory for checkpoints and TF summaries. If this
contains checkpoint training will be resumed from the latest checkpoint.
"""
logging.info("run_lib.py:train")
logging.info("#" * 10 + "config" + "#" * 10)
logging.info(config)
logging.info("#" * (20 + len("config")))
# Create directories for experimental logs
sample_dir = os.path.join(workdir, "samples")
tf.io.gfile.makedirs(sample_dir)
tb_dir = os.path.join(workdir, "tensorboard")
tf.io.gfile.makedirs(tb_dir)
writer = tensorboard.SummaryWriter(tb_dir)
# Initialize model.
score_model = mutils.create_model(config)
ema = ExponentialMovingAverage(score_model.parameters(), decay=config.model.ema_rate)
optimizer = losses.get_optimizer(config, score_model.parameters())
state = dict(optimizer=optimizer, model=score_model, ema=ema, step=0)
# Create checkpoints directory
checkpoint_dir = os.path.join(workdir, "checkpoints")
# Intermediate checkpoints to resume training after pre-emption in cloud environments
checkpoint_meta_dir = os.path.join(workdir, "checkpoints-meta", "checkpoint.pth")
tf.io.gfile.makedirs(checkpoint_dir)
tf.io.gfile.makedirs(os.path.dirname(checkpoint_meta_dir))
# Resume training when intermediate checkpoints are detected
state = restore_checkpoint(checkpoint_meta_dir, state, config.device)
initial_step = int(state['step'])
# Build data iterators
train_ds, eval_ds, _ = datasets.get_dataset(config,
uniform_dequantization=config.data.uniform_dequantization)
train_iter = iter(train_ds) # pytype: disable=wrong-arg-types
eval_iter = iter(eval_ds) # pytype: disable=wrong-arg-types
# Create data normalizer and its inverse
scaler = datasets.get_data_scaler(config)
inverse_scaler = datasets.get_data_inverse_scaler(config)
# Setup SDEs
if config.training.sde.lower() == 'consistencyfm':
sde = sde_lib.ConsistencyFM(init_type=config.sampling.init_type, noise_scale=config.sampling.init_noise_scale, use_ode_sampler=config.sampling.use_ode_sampler, sample_N=config.sampling.sample_N, consistencyfm_hyperparameters=config.consistencyfm.to_dict())
sampling_eps = 1e-3
else:
raise NotImplementedError(f"SDE {config.training.sde} unknown.")
# Build one-step training and evaluation functions
optimize_fn = losses.optimization_manager(config)
continuous = config.training.continuous
reduce_mean = config.training.reduce_mean
likelihood_weighting = config.training.likelihood_weighting
train_step_fn = losses.get_step_fn(sde, train=True, optimize_fn=optimize_fn,
reduce_mean=reduce_mean, continuous=continuous,
likelihood_weighting=likelihood_weighting)
eval_step_fn = losses.get_step_fn(sde, train=False, optimize_fn=optimize_fn,
reduce_mean=reduce_mean, continuous=continuous,
likelihood_weighting=likelihood_weighting)
# Building sampling functions
if config.training.snapshot_sampling:
sampling_shape = (config.training.batch_size, config.data.num_channels,
config.data.image_size, config.data.image_size)
sampling_fn = sampling.get_sampling_fn(config, sde, sampling_shape, inverse_scaler, sampling_eps)
num_train_steps = config.training.n_iters
# In case there are multiple hosts (e.g., TPU pods), only log to host 0
logging.info("Starting training loop at step %d." % (initial_step,))
for step in range(initial_step, num_train_steps + 1):
# Convert data to JAX arrays and normalize them. Use ._numpy() to avoid copy.
batch = torch.from_numpy(next(train_iter)['image']._numpy()).to(config.device).float()
batch = batch.permute(0, 3, 1, 2)
batch = scaler(batch)
# Execute one training step
loss = train_step_fn(state, batch)
if step % config.training.log_freq == 0:
logging.info("step: %d, training_loss: %.5e" % (step, loss.item()))
writer.add_scalar("training_loss", loss, step)
# Save a temporary checkpoint to resume training after pre-emption periodically
if step != 0 and step % config.training.snapshot_freq_for_preemption == 0:
save_checkpoint(checkpoint_meta_dir, state)
# Report the loss on an evaluation dataset periodically
if step % config.training.eval_freq == 0:
eval_batch = torch.from_numpy(next(eval_iter)['image']._numpy()).to(config.device).float()
eval_batch = eval_batch.permute(0, 3, 1, 2)
eval_batch = scaler(eval_batch)
eval_loss = eval_step_fn(state, eval_batch)
logging.info("step: %d, eval_loss: %.5e" % (step, eval_loss.item()))
writer.add_scalar("eval_loss", eval_loss.item(), step)
# Save a checkpoint periodically and generate samples if needed
if step % config.training.snapshot_freq == 0 or step == num_train_steps or step == initial_step:
save_step = step // config.training.snapshot_freq
save_checkpoint(os.path.join(checkpoint_dir, f'checkpoint_{save_step}.pth'), state)
# Generate and save samples
if config.training.snapshot_sampling:
ema.store(score_model.parameters())
ema.copy_to(score_model.parameters())
sample, n = sampling_fn(score_model)
ema.restore(score_model.parameters())
this_sample_dir = os.path.join(sample_dir, "iter_{}".format(step))
tf.io.gfile.makedirs(this_sample_dir)
nrow = int(np.sqrt(sample.shape[0]))
image_grid = make_grid(sample, nrow, padding=2)
sample = np.clip(sample.permute(0, 2, 3, 1).cpu().numpy() * 255, 0, 255).astype(np.uint8)
with tf.io.gfile.GFile(
os.path.join(this_sample_dir, "sample.np"), "wb") as fout:
np.save(fout, sample)
with tf.io.gfile.GFile(
os.path.join(this_sample_dir, "sample.png"), "wb") as fout:
save_image(image_grid, fout)
def evaluate(config,
workdir,
eval_folder="eval"):
"""Evaluate trained models.
Args:
config: Configuration to use.
workdir: Working directory for checkpoints.
eval_folder: The subfolder for storing evaluation results. Default to
"eval".
"""
# Create directory to eval_folder
eval_dir = os.path.join(workdir, eval_folder)
tf.io.gfile.makedirs(eval_dir)
# Build data pipeline
train_ds, eval_ds, _ = datasets.get_dataset(config,
uniform_dequantization=config.data.uniform_dequantization,
evaluation=True)
# Create data normalizer and its inverse
scaler = datasets.get_data_scaler(config)
inverse_scaler = datasets.get_data_inverse_scaler(config)
# Initialize model
score_model = mutils.create_model(config)
optimizer = losses.get_optimizer(config, score_model.parameters())
ema = ExponentialMovingAverage(score_model.parameters(), decay=config.model.ema_rate)
state = dict(optimizer=optimizer, model=score_model, ema=ema, step=0)
checkpoint_dir = os.path.join(workdir, "checkpoints")
# Setup SDEs
if config.training.sde.lower() == 'consistencyfm':
sde = sde_lib.ConsistencyFM(init_type=config.sampling.init_type, noise_scale=config.sampling.init_noise_scale, use_ode_sampler=config.sampling.use_ode_sampler, sigma_var=config.sampling.sigma_variance, ode_tol=config.sampling.ode_tol, sample_N=config.sampling.sample_N, consistencyfm_hyperparameters=config.consistencyfm.to_dict())
sampling_eps = 1e-3
else:
raise NotImplementedError(f"SDE {config.training.sde} unknown.")
# Create the one-step evaluation function when loss computation is enabled
if config.eval.enable_loss:
optimize_fn = losses.optimization_manager(config)
continuous = config.training.continuous
likelihood_weighting = config.training.likelihood_weighting
reduce_mean = config.training.reduce_mean
eval_step = losses.get_step_fn(sde, train=False, optimize_fn=optimize_fn,
reduce_mean=reduce_mean,
continuous=continuous,
likelihood_weighting=likelihood_weighting)
# Create data loaders for likelihood evaluation. Only evaluate on uniformly dequantized data
train_ds_bpd, eval_ds_bpd, _ = datasets.get_dataset(config,
uniform_dequantization=True, evaluation=True)
if config.eval.bpd_dataset.lower() == 'train':
ds_bpd = train_ds_bpd
bpd_num_repeats = 1
elif config.eval.bpd_dataset.lower() == 'test':
# Go over the dataset 5 times when computing likelihood on the test dataset
ds_bpd = eval_ds_bpd
bpd_num_repeats = 5
else:
raise ValueError(f"No bpd dataset {config.eval.bpd_dataset} recognized.")
# Build the likelihood computation function when likelihood is enabled
if config.eval.enable_bpd:
if config.training.sde.lower() == 'mixup':
likelihood_fn = likelihood.get_likelihood_fn_rf(sde, inverse_scaler)
else:
likelihood_fn = likelihood.get_likelihood_fn(sde, inverse_scaler)
# Build the sampling function when sampling is enabled
if config.eval.enable_sampling:
sampling_shape = (config.eval.batch_size,
config.data.num_channels,
config.data.image_size, config.data.image_size)
sampling_fn = sampling.get_sampling_fn(config, sde, sampling_shape, inverse_scaler, sampling_eps)
# Use inceptionV3 for images with resolution higher than 256.
inceptionv3 = config.data.image_size >= 256
inception_model = evaluation.get_inception_model(inceptionv3=inceptionv3)
if config.eval.predefined_z_path is not None and config.eval.predefined_z_path != "None":
# when sampling uncurated images using the same noise
predefined_z = torch.load(config.eval.predefined_z_path).to(config.device).float()
assert predefined_z.shape == sampling_shape, "Predefined z shape does not match the sampling shape."
logging.info("##### Predefined z loaded from %s" % config.eval.predefined_z_path)
elif config.eval.predefined_z_path == "None" or config.eval.predefined_z_path is None:
predefined_z = None
logging.info("##### No predefined z loaded.")
begin_ckpt = config.eval.begin_ckpt
logging.info("begin checkpoint: %d" % (begin_ckpt,))
for ckpt in range(begin_ckpt, config.eval.end_ckpt + 1):
# Wait if the target checkpoint doesn't exist yet
waiting_message_printed = False
ckpt_filename = os.path.join(checkpoint_dir, "checkpoint_{}.pth".format(ckpt))
while not tf.io.gfile.exists(ckpt_filename):
if not waiting_message_printed:
logging.warning("Waiting for the arrival of checkpoint_%d" % (ckpt,))
waiting_message_printed = True
time.sleep(60)
# Wait for 2 additional mins in case the file exists but is not ready for reading
ckpt_path = os.path.join(checkpoint_dir, f'checkpoint_{ckpt}.pth')
try:
state = restore_checkpoint(ckpt_path, state, device=config.device)
except:
time.sleep(60)
try:
state = restore_checkpoint(ckpt_path, state, device=config.device)
except:
time.sleep(120)
state = restore_checkpoint(ckpt_path, state, device=config.device)
ema.copy_to(score_model.parameters())
# Compute the loss function on the full evaluation dataset if loss computation is enabled
if config.eval.enable_loss:
all_losses = []
eval_iter = iter(eval_ds) # pytype: disable=wrong-arg-types
for i, batch in enumerate(eval_iter):
eval_batch = torch.from_numpy(batch['image']._numpy()).to(config.device).float()
eval_batch = eval_batch.permute(0, 3, 1, 2)
eval_batch = scaler(eval_batch)
eval_loss = eval_step(state, eval_batch)
all_losses.append(eval_loss.item())
if (i + 1) % 1000 == 0:
logging.info("Finished %dth step loss evaluation" % (i + 1))
# Save loss values to disk or Google Cloud Storage
all_losses = np.asarray(all_losses)
with tf.io.gfile.GFile(os.path.join(eval_dir, f"ckpt_{ckpt}_loss.npz"), "wb") as fout:
io_buffer = io.BytesIO()
np.savez_compressed(io_buffer, all_losses=all_losses, mean_loss=all_losses.mean())
fout.write(io_buffer.getvalue())
# Compute log-likelihoods (bits/dim) if enabled
if config.eval.enable_bpd:
bpds = []
for repeat in range(bpd_num_repeats):
bpd_iter = iter(ds_bpd) # pytype: disable=wrong-arg-types
for batch_id in range(len(ds_bpd)):
batch = next(bpd_iter)
eval_batch = torch.from_numpy(batch['image']._numpy()).to(config.device).float()
eval_batch = eval_batch.permute(0, 3, 1, 2)
eval_batch = scaler(eval_batch)
bpd = likelihood_fn(score_model, eval_batch)[0]
bpd = bpd.detach().cpu().numpy().reshape(-1)
bpds.extend(bpd)
logging.info(
"ckpt: %d, repeat: %d, batch: %d, mean bpd: %6f" % (ckpt, repeat, batch_id, np.mean(np.asarray(bpds))))
bpd_round_id = batch_id + len(ds_bpd) * repeat
# Save bits/dim to disk or Google Cloud Storage
with tf.io.gfile.GFile(os.path.join(eval_dir,
f"{config.eval.bpd_dataset}_ckpt_{ckpt}_bpd_{bpd_round_id}.npz"),
"wb") as fout:
io_buffer = io.BytesIO()
np.savez_compressed(io_buffer, bpd)
fout.write(io_buffer.getvalue())
# Generate samples and compute IS/FID/KID when enabled
if config.eval.enable_sampling:
num_sampling_rounds = config.eval.num_samples // config.eval.batch_size + 1
for r in range(num_sampling_rounds):
logging.info("sampling -- ckpt: %d, round: %d" % (ckpt, r))
# Directory to save samples. Different for each host to avoid writing conflicts
this_sample_dir = os.path.join(
eval_dir, f"ckpt_{ckpt}")
tf.io.gfile.makedirs(this_sample_dir)
samples, n = sampling_fn(score_model, z = predefined_z)
samples = np.clip(samples.permute(0, 2, 3, 1).cpu().numpy() * 255., 0, 255).astype(np.uint8)
samples = samples.reshape(
(-1, config.data.image_size, config.data.image_size, config.data.num_channels))
# Write samples to disk or Google Cloud Storage
with tf.io.gfile.GFile(
os.path.join(this_sample_dir, f"samples_{r}.npz"), "wb") as fout:
io_buffer = io.BytesIO()
np.savez_compressed(io_buffer, samples=samples)
fout.write(io_buffer.getvalue())
# Force garbage collection before calling TensorFlow code for Inception network
gc.collect()
latents = evaluation.run_inception_distributed(samples, inception_model,
inceptionv3=inceptionv3)
# Force garbage collection again before returning to JAX code
gc.collect()
# Save latent represents of the Inception network to disk or Google Cloud Storage
with tf.io.gfile.GFile(
os.path.join(this_sample_dir, f"statistics_{r}.npz"), "wb") as fout:
io_buffer = io.BytesIO()
np.savez_compressed(
io_buffer, pool_3=latents["pool_3"], logits=latents["logits"])
fout.write(io_buffer.getvalue())
# Compute inception scores, FIDs and KIDs.
# Load all statistics that have been previously computed and saved for each host
all_logits = []
all_pools = []
this_sample_dir = os.path.join(eval_dir, f"ckpt_{ckpt}")
stats = tf.io.gfile.glob(os.path.join(this_sample_dir, "statistics_*.npz"))
for stat_file in stats:
with tf.io.gfile.GFile(stat_file, "rb") as fin:
stat = np.load(fin)
if not inceptionv3:
all_logits.append(stat["logits"])
all_pools.append(stat["pool_3"])
if not inceptionv3:
all_logits = np.concatenate(all_logits, axis=0)[:config.eval.num_samples]
all_pools = np.concatenate(all_pools, axis=0)[:config.eval.num_samples]
# Load pre-computed dataset statistics.
data_stats = evaluation.load_dataset_stats(config)
data_pools = data_stats["pool_3"]
# Compute FID/KID/IS on all samples together.
if not inceptionv3:
inception_score = tfgan.eval.classifier_score_from_logits(all_logits)
else:
inception_score = -1
fid = tfgan.eval.frechet_classifier_distance_from_activations(
data_pools, all_pools)
# Hack to get tfgan KID work for eager execution.
tf_data_pools = tf.convert_to_tensor(data_pools)
tf_all_pools = tf.convert_to_tensor(all_pools)
kid = tfgan.eval.kernel_classifier_distance_from_activations(
tf_data_pools, tf_all_pools).numpy()
del tf_data_pools, tf_all_pools
logging.info(
"ckpt-%d --- inception_score: %.6e, FID: %.6e, KID: %.6e" % (
ckpt, inception_score, fid, kid))
with tf.io.gfile.GFile(os.path.join(eval_dir, f"report_{ckpt}.npz"),
"wb") as f:
io_buffer = io.BytesIO()
np.savez_compressed(io_buffer, IS=inception_score, fid=fid, kid=kid)
f.write(io_buffer.getvalue())