-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathRemoveFingeringToolkit.py
108 lines (100 loc) · 3.83 KB
/
RemoveFingeringToolkit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
import cv2 as cv
import numpy as np
def EraseNonConnected(img, x, y, area_thresh=500, brushsize=12):
H, W = img.shape[:2]
x0 = max(0, x-brushsize)
y0 = max(0, y-brushsize)
x1 = min(W-1, x+brushsize)
y1 = min(H-1, y+brushsize)
if (np.average(img[y0:y1, x0:x1]) < 230):
# print("decreasing brush size")
brushsize = brushsize//2
x0 = max(0, x-brushsize)
y0 = max(0, y-brushsize)
x1 = min(W-1, x+brushsize)
y1 = min(H-1, y+brushsize)
img[:] = 255-img
nlabels, labels, stats, centroids = cv.connectedComponentsWithStats(
img, None, None, None, 4)
areas = stats[:, cv.CC_STAT_AREA]
left = stats[:, cv.CC_STAT_LEFT]
top = stats[:, cv.CC_STAT_TOP]
width = stats[:, cv.CC_STAT_WIDTH]
height = stats[:, cv.CC_STAT_HEIGHT]
for x in range(x0, x1):
for y in range(y0, y1):
j = labels[y, x]
if (areas[j] < area_thresh):
for xt in range(left[j], left[j] + width[j]):
for yt in range(top[j], top[j] + height[j]):
if labels[yt, xt] == j:
img[yt, xt] = 0
img[:] = 255-img
return (img)
def EraseConnected(img, x, y, brushsize=12):
H, W = img.shape[:2]
x0 = max(0, x-brushsize)
y0 = max(0, y-brushsize)
x1 = min(W-1, x+brushsize)
y1 = min(H-1, y+brushsize)
col_count = x1-x0+1
Thresh = 80
for y in range(y0, y1):
row_sum = np.sum(img[y, x0:x1])
row_avg = row_sum//col_count
if (row_avg > Thresh):
img[y, x0:x1] = 255
return (img)
def GenerateEraseMask(img, area_thresh=500):
img[:] = 255-img
H, W = img.shape[:2]
erase_mask = np.zeros((H, W), np.uint8)
erase_mask[:] = 255-erase_mask
nlabels, labels, stats, centroids = cv.connectedComponentsWithStats(
img, None, None, None, 4)
areas = stats[:, cv.CC_STAT_AREA]
left = stats[:, cv.CC_STAT_LEFT]
top = stats[:, cv.CC_STAT_TOP]
width = stats[:, cv.CC_STAT_WIDTH]
height = stats[:, cv.CC_STAT_HEIGHT]
for j in range(1, nlabels):
# Enter complex checking only if shape is small enough,
# and if width< height (shape is vertical)
if (areas[j] <= area_thresh) and width[j]<=height[j]:
y_ax = left[j] + width[j]//2
x_ax = top[j] + height[j]//2
# Count number of color changes. >2 then complex
# X axis
color_change=0
isComplex=False
start_color=labels[x_ax, left[j]]
if(start_color==j):
color_change+=1
for x in range(left[j], left[j] + width[j]-1):
if(labels[x_ax, x] != labels[x_ax, x+1]):
color_change +=1
if (labels[x_ax, left[j] + width[j]-1]!=j):
color_change -=1
if(color_change>2):
isComplex=True
# Y axis
if(not isComplex):
color_change=0
start_color=labels[top[j], y_ax]
if(start_color==j):
color_change+=1
for y in range(top[j], top[j] + height[j]-1):
if(labels[y, y_ax] != labels[y+1, y_ax]):
color_change +=1
if (labels[top[j] + height[j]-1, y_ax]!=j):
color_change -=1
if(color_change>2):
isComplex=True
# Change color if isComplex
if(isComplex):
for x in range(left[j], left[j] + width[j]):
for y in range(top[j], top[j] + height[j]):
if labels[y, x] == j:
erase_mask[y, x] = 0
img[:] = 255-img
return erase_mask