-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutilities.py
359 lines (274 loc) · 13.5 KB
/
utilities.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
import os
import pickle
import matplotlib.pyplot as plt
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from tqdm import tqdm
from models import LossFunctions
class R2Loss(nn.Module):
def forward(self, y_pred, y):
var_y = torch.var(y, unbiased=False)
return 1.0 - F.mse_loss(y_pred, y, reduction="mean") / var_y
class HelperFunctions(object):
def __init__(self):
self.data_path = './meta/data/'
self.project_path = './meta/'
self.dropsites = [38039, 27123, 47095, 47183, 47053, 47045, 47079]
self.scalar = torch.load(os.path.join(self.data_path, 'recotest_data_scaled_v4_scalers.sav'))['Y2_scaler']
def Z_norm(self, X):
X_mean = X.numpy().mean(dtype=np.float64)
X_std = np.std(np.array(X, dtype=np.float64))
return (X - X_mean) / X_std, X_mean, X_std
def Z_norm_reverse(self, X, Xscaler, units_convert=1.0):
return (X * Xscaler[1] + Xscaler[0]) * units_convert
def scalar_maxmin(self, X):
return (X - X.min()) / (X.max() - X.min())
def Z_norm_with_scaler(self, X, Xscaler):
return (X - Xscaler[0]) / Xscaler[1]
def pad_array(self, arr, size):
# support at most 3-d array
shape = np.shape(arr)
res = np.zeros(size)
if len(shape) == 2:
res[:shape[0], :shape[1]] = arr
elif len(shape) == 3:
res[:shape[0], :shape[1], :shape[2]] = arr
else:
res[:shape[0]] = arr
return res
def load_raw_target_data(self):
# load the scaler
data_path = self.data_path
scalar = self.scalar
# remove the county without Corn/Soybean rotation fields
county_FIPS = np.load(data_path + 'county_FIPS.npy')
county_FIPS = [i for i in county_FIPS if i not in self.dropsites]
county_FIPS = np.array(county_FIPS)
# load corn and soybean fraction (Dictionary)
corn_fraction = np.load(os.path.join(data_path, 'corn_fraction_sample_300.npy'), allow_pickle=True).item()
soybean_fraction = np.load(os.path.join(data_path, 'soybean_fraction_sample_300.npy'), allow_pickle=True).item()
# load observed crop yields (Dictionary)
obs_corn_yield = np.load(os.path.join(data_path, 'obs_corn_yield.npy'), allow_pickle=True).item()
obs_soybean_yield = np.load(os.path.join(data_path, 'obs_soybean_yield.npy'), allow_pickle=True).item()
Y_corn_new = []
Y_corn_fraction_new = []
Y_soybean_new = []
Y_soybean_fraction_new = []
for county_id in county_FIPS:
if corn_fraction[county_id].shape != (300, 21):
corn_fraction[county_id] = self.pad_array(corn_fraction[county_id], (300, 21))
if soybean_fraction[county_id].shape != (300, 21):
soybean_fraction[county_id] = self.pad_array(soybean_fraction[county_id], (300, 21))
Y_corn_new.append(obs_corn_yield[county_id].tolist())
Y_corn_fraction_new.append(corn_fraction[county_id])
Y_soybean_new.append(obs_soybean_yield[county_id].tolist())
Y_soybean_fraction_new.append(soybean_fraction[county_id])
Y_corn_new = np.array(Y_corn_new)
Y_corn_fraction_new = np.stack(Y_corn_fraction_new, axis=0)
Y_soybean_new = np.array(Y_soybean_new)
Y_soybean_fraction_new = np.stack(Y_soybean_fraction_new, axis=0)
# # expand dimension
if len(Y_corn_new.shape) < 3:
Y_corn_new = np.expand_dims(Y_corn_new, axis=2)
Y_soybean_new = np.expand_dims(Y_soybean_new, axis=2)
print("cleaned county size", len(county_FIPS))
print("Y corn fraction shape", Y_corn_fraction_new.shape)
print("Y corn yields shape", Y_corn_new.shape)
print("Y soybean fraction shape", Y_soybean_fraction_new.shape)
print("Y soybean yields shape", Y_soybean_new.shape)
return county_FIPS, Y_corn_fraction_new, Y_soybean_fraction_new, Y_corn_new, Y_soybean_new
def load_subsample_data(self, sample_size=15):
# store cache data
cache_path = os.path.join(self.project_path, "cache_data_subsample.pickle")
if os.path.exists(cache_path):
with open(cache_path, 'rb') as f:
cache = pickle.load(f)
data, ylds, corn_frac, soybean_frac, corn_ylds, soybean_ylds, yld_ids = cache
return data, ylds, corn_frac, soybean_frac, corn_ylds, soybean_ylds, yld_ids
data = []
ylds = []
corn_frac = []
soybean_frac = []
corn_ylds = []
soybean_ylds = []
# a combination of county id and year as a label
yld_ids = []
county_FIPS, corn_fraction, soybean_fraction, corn_yields, soybean_yields = self.load_raw_target_data()
# load the county basic data
data_path = os.path.join(self.data_path, 'combine_random_sample_size_300/')
for i in tqdm(range(len(county_FIPS))):
fips = county_FIPS[i]
# remove county that has nan features
if fips in self.dropsites:
continue
data_i = np.load(os.path.join(data_path, f'Pred_xset_{fips}_sample_300.npy.npz'))['arr_0']
if data_i.shape != (300, 7665, 19):
data_i = self.pad_array(data_i, (300, 7665, 19))
random_indices = np.random.choice(300, size=sample_size, replace=False)
data_tmp = data_i[random_indices, :, :]
corn_fraction_tmp = corn_fraction[i, random_indices, :]
soybean_fraction_tmp = soybean_fraction[i, random_indices, :]
if np.isnan(data_tmp).any():
print(f"nan in feature data {fips}")
data.append(data_tmp)
for k in range(sample_size):
corn_fraction_k = corn_fraction_tmp[k, :]
soybean_fraction_k = soybean_fraction_tmp[k, :]
corn_fraction_k = np.expand_dims(corn_fraction_k, axis=1)
soybean_fraction_k = np.expand_dims(soybean_fraction_k, axis=1)
corn_frac.append(corn_fraction_k)
soybean_frac.append(soybean_fraction_k)
yield_tmp = corn_yields[i] * (corn_fraction_k > 0.5) + soybean_yields[i] * (soybean_fraction_k > 0.5)
if np.any(yield_tmp):
print(f"yields has 0 values {fips} at sample {k}")
# print(yield_tmp)
if np.isnan(yield_tmp).any():
print(f"yields has nan values {fips} at sample {k}")
ylds.append(yield_tmp)
corn_ylds.append(corn_yields[i])
soybean_ylds.append(soybean_yields[i])
# county, location, year
for j in range(corn_yields[i].shape[0]):
yld_ids.append((fips, k, j))
data = np.concatenate(data, axis=0)
ylds = np.array(ylds)
corn_ylds = np.array(corn_ylds)
soybean_ylds = np.array(soybean_ylds)
yld_ids = np.array(yld_ids)
corn_frac = np.array(corn_frac)
soybean_frac = np.array(soybean_frac)
data = np.nan_to_num(data)
ylds = np.nan_to_num(ylds)
corn_ylds = np.nan_to_num(corn_ylds)
soybean_ylds = np.nan_to_num(soybean_ylds)
ylds = self.Z_norm_with_scaler(ylds, self.scalar[0])
corn_ylds = self.Z_norm_with_scaler(corn_ylds, self.scalar[0])
soybean_ylds = self.Z_norm_with_scaler(soybean_ylds, self.scalar[0])
ylds = torch.from_numpy(np.float32(ylds))
corn_ylds = torch.from_numpy(np.float32(corn_ylds))
soybean_ylds = torch.from_numpy(np.float32(soybean_ylds))
if not os.path.exists(cache_path):
cache = (data, ylds, corn_frac, soybean_frac, corn_ylds, soybean_ylds, yld_ids)
with open(cache_path, 'wb') as f:
pickle.dump(cache, f)
return data, ylds, corn_frac, soybean_frac, corn_ylds, soybean_ylds, yld_ids
def load_mean_data(self, corn_yield, soybean_yield):
cache_path = os.path.join(self.project_path, "cache_data_mean.pickle")
if os.path.exists(cache_path):
with open(cache_path, 'rb') as f:
cache = pickle.load(f)
data, ylds, corn_frac, soybean_frac, corn_ylds, soybean_ylds, yld_ids = cache
return data, ylds, corn_frac, soybean_frac, corn_ylds, soybean_ylds, yld_ids
data = []
ylds = []
corn_frac = []
soybean_frac = []
corn_ylds = []
soybean_ylds = []
# a combination of county id and year as a label
yld_ids = []
county_FIPS, corn_fraction, soybean_fraction, corn_yields, soybean_yields = self.load_raw_target_data()
# load the county basic data
data_path = os.path.join(self.data_path, 'combine_random_sample_size_300/')
for i in tqdm(range(len(county_FIPS))):
fips = county_FIPS[i]
# remove county that has nan features
if fips in self.dropsites:
continue
data_i = np.load(os.path.join(data_path, f'Pred_xset_{fips}_sample_300.npy.npz'))['arr_0']
if data_i.shape != (300, 7665, 19):
data_i = self.pad_array(data_i, (300, 7665, 19))
data.append(data_i.mean(0))
corn_frac_mean = corn_fraction.mean(1)[i, :]
soybean_frac_mean = soybean_fraction.mean(1)[i, :]
corn_frac = np.expand_dims(corn_frac, axis=1)
soybean_frac = np.expand_dims(soybean_frac, axis=1)
yield_tmp = corn_yields[i] * (corn_frac_mean > 0.5) + soybean_yields[i] * (soybean_frac_mean > 0.5)
ylds.append(yield_tmp)
corn_frac.append(corn_frac_mean)
soybean_frac.append(soybean_frac_mean)
corn_ylds.append(corn_yields[i])
soybean_ylds.append(soybean_yields[i])
# county, location, year
for j in range(corn_yields[i].shape[0]):
yld_ids.append((fips, 0, j))
data = np.concatenate(data, axis=0)
ylds = np.array(ylds)
corn_ylds = np.array(corn_ylds)
soybean_ylds = np.array(soybean_ylds)
yld_ids = np.array(yld_ids)
corn_frac = np.array(corn_frac)
soybean_frac = np.array(soybean_frac)
data = np.nan_to_num(data)
ylds = np.nan_to_num(ylds)
corn_ylds = np.nan_to_num(corn_ylds)
soybean_ylds = np.nan_to_num(soybean_ylds)
ylds = self.Z_norm_with_scaler(ylds, self.scalar[0])
corn_ylds = self.Z_norm_with_scaler(corn_ylds, self.scalar[0])
soybean_ylds = self.Z_norm_with_scaler(soybean_ylds, self.scalar[0])
ylds = torch.from_numpy(np.float32(ylds))
corn_ylds = torch.from_numpy(np.float32(corn_ylds))
soybean_ylds = torch.from_numpy(np.float32(soybean_ylds))
if not os.path.exists(cache_path):
cache = (data, ylds, corn_frac, soybean_frac, corn_ylds, soybean_ylds, yld_ids)
with open(cache_path, 'wb') as f:
pickle.dump(cache, f)
return data, ylds, corn_frac, soybean_frac, corn_ylds, soybean_ylds, yld_ids
def plot(self, corn_pred, gold_corn, file_path, name, crop="corn"):
# revert normalization
mse_loss_func = LossFunctions().mse_loss_func()
compute_r2 = R2Loss()
R2 = compute_r2(corn_pred, gold_corn).detach().cpu().numpy()
RMSE = np.sqrt(mse_loss_func(corn_pred, gold_corn).detach().cpu().numpy())
Bias = torch.mean(corn_pred - gold_corn).detach().cpu().numpy()
fig, ax = plt.subplots(1, 1, figsize=(6, 6))
ax.scatter(corn_pred.detach().cpu().tolist(), gold_corn.detach().cpu().tolist(),
s=1, color='black', alpha=0.5)
print("R2", R2, "RMSE", RMSE, "Bias", Bias, "\n")
# print("RMSE", RMSE)
# print("Bias", Bias)
if crop == "corn":
ax.plot([-2, 600], [-2, 600], color='red', linestyle='--')
ax.text(5, 520, 'R$^2$=%0.3f\nRMSE=%0.3f\nbias=%0.3f' % (R2, RMSE, Bias), fontsize=12)
else:
ax.plot([-2, 300], [-2, 300], color='red', linestyle='--')
ax.text(5, 260, 'R$^2$=%0.3f\nRMSE=%0.3f\nbias=%0.3f' % (R2, RMSE, Bias), fontsize=12)
ax.set_xlabel("predicted values")
ax.set_ylabel("gold values")
ax.set_title(name, fontsize=15, weight='bold')
# plt.show()
plt.savefig(f"{file_path}/{name}.png")
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self, name, fmt=':f'):
self.name = name
self.fmt = fmt
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def __str__(self):
fmtstr = '{name} {val' + self.fmt + '} ({avg' + self.fmt + '})'
return fmtstr.format(**self.__dict__)
class ProgressMeter(object):
def __init__(self, num_batches, meters, prefix=""):
self.batch_fmtstr = self._get_batch_fmtstr(num_batches)
self.meters = meters
self.prefix = prefix
def display(self, batch):
entries = [self.prefix + self.batch_fmtstr.format(batch)]
entries += [str(meter) for meter in self.meters]
print('\t'.join(entries))
def _get_batch_fmtstr(self, num_batches):
num_digits = len(str(num_batches // 1))
fmt = '{:' + str(num_digits) + 'd}'
return '[' + fmt + '/' + fmt.format(num_batches) + ']'