forked from zihangdai/xlnet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfunction_builder.py
393 lines (313 loc) · 13.2 KB
/
function_builder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
"""doc."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import functools
import os
import tensorflow as tf
import modeling
import xlnet
def construct_scalar_host_call(
monitor_dict,
model_dir,
prefix="",
reduce_fn=None):
"""
Construct host calls to monitor training progress on TPUs.
"""
metric_names = list(monitor_dict.keys())
def host_call_fn(global_step, *args):
"""actual host call function."""
step = global_step[0]
with tf.contrib.summary.create_file_writer(
logdir=model_dir, filename_suffix=".host_call").as_default():
with tf.contrib.summary.always_record_summaries():
for i, name in enumerate(metric_names):
if reduce_fn is None:
scalar = args[i][0]
else:
scalar = reduce_fn(args[i])
with tf.contrib.summary.record_summaries_every_n_global_steps(
100, global_step=step):
tf.contrib.summary.scalar(prefix + name, scalar, step=step)
return tf.contrib.summary.all_summary_ops()
global_step_tensor = tf.reshape(tf.train.get_or_create_global_step(), [1])
other_tensors = [tf.reshape(monitor_dict[key], [1]) for key in metric_names]
return host_call_fn, [global_step_tensor] + other_tensors
def two_stream_loss(FLAGS, features, labels, mems, is_training):
"""Pretraining loss with two-stream attention Transformer-XL."""
#### Unpack input
mem_name = "mems"
mems = mems.get(mem_name, None)
inp_k = tf.transpose(features["input_k"], [1, 0])
inp_q = tf.transpose(features["input_q"], [1, 0])
seg_id = tf.transpose(features["seg_id"], [1, 0])
inp_mask = None
perm_mask = tf.transpose(features["perm_mask"], [1, 2, 0])
if FLAGS.num_predict is not None:
# [num_predict x tgt_len x bsz]
target_mapping = tf.transpose(features["target_mapping"], [1, 2, 0])
else:
target_mapping = None
# target for LM loss
tgt = tf.transpose(features["target"], [1, 0])
# target mask for LM loss
tgt_mask = tf.transpose(features["target_mask"], [1, 0])
# construct xlnet config and save to model_dir
xlnet_config = xlnet.XLNetConfig(FLAGS=FLAGS)
xlnet_config.to_json(os.path.join(FLAGS.model_dir, "config.json"))
# construct run config from FLAGS
run_config = xlnet.create_run_config(is_training, False, FLAGS)
xlnet_model = xlnet.XLNetModel(
xlnet_config=xlnet_config,
run_config=run_config,
input_ids=inp_k,
seg_ids=seg_id,
input_mask=inp_mask,
mems=mems,
perm_mask=perm_mask,
target_mapping=target_mapping,
inp_q=inp_q)
output = xlnet_model.get_sequence_output()
new_mems = {mem_name: xlnet_model.get_new_memory()}
lookup_table = xlnet_model.get_embedding_table()
initializer = xlnet_model.get_initializer()
with tf.variable_scope("model", reuse=tf.AUTO_REUSE):
# LM loss
lm_loss = modeling.lm_loss(
hidden=output,
target=tgt,
n_token=xlnet_config.n_token,
d_model=xlnet_config.d_model,
initializer=initializer,
lookup_table=lookup_table,
tie_weight=True,
bi_data=run_config.bi_data,
use_tpu=run_config.use_tpu)
#### Quantity to monitor
monitor_dict = {}
if FLAGS.use_bfloat16:
tgt_mask = tf.cast(tgt_mask, tf.float32)
lm_loss = tf.cast(lm_loss, tf.float32)
total_loss = tf.reduce_sum(lm_loss * tgt_mask) / tf.reduce_sum(tgt_mask)
monitor_dict["total_loss"] = total_loss
return total_loss, new_mems, monitor_dict
def get_loss(FLAGS, features, labels, mems, is_training):
"""Pretraining loss with two-stream attention Transformer-XL."""
if FLAGS.use_bfloat16:
with tf.tpu.bfloat16_scope():
return two_stream_loss(FLAGS, features, labels, mems, is_training)
else:
return two_stream_loss(FLAGS, features, labels, mems, is_training)
def get_classification_loss(
FLAGS, features, n_class, is_training):
"""Loss for downstream classification tasks."""
bsz_per_core = tf.shape(features["input_ids"])[0]
inp = tf.transpose(features["input_ids"], [1, 0])
seg_id = tf.transpose(features["segment_ids"], [1, 0])
inp_mask = tf.transpose(features["input_mask"], [1, 0])
label = tf.reshape(features["label_ids"], [bsz_per_core])
xlnet_config = xlnet.XLNetConfig(json_path=FLAGS.model_config_path)
run_config = xlnet.create_run_config(is_training, True, FLAGS)
xlnet_model = xlnet.XLNetModel(
xlnet_config=xlnet_config,
run_config=run_config,
input_ids=inp,
seg_ids=seg_id,
input_mask=inp_mask)
summary = xlnet_model.get_pooled_out(FLAGS.summary_type, FLAGS.use_summ_proj)
with tf.variable_scope("model", reuse=tf.AUTO_REUSE):
if FLAGS.cls_scope is not None and FLAGS.cls_scope:
cls_scope = "classification_{}".format(FLAGS.cls_scope)
else:
cls_scope = "classification_{}".format(FLAGS.task_name.lower())
per_example_loss, logits = modeling.classification_loss(
hidden=summary,
labels=label,
n_class=n_class,
initializer=xlnet_model.get_initializer(),
scope=cls_scope,
return_logits=True)
total_loss = tf.reduce_mean(per_example_loss)
return total_loss, per_example_loss, logits
def get_regression_loss(
FLAGS, features, is_training):
"""Loss for downstream regression tasks."""
bsz_per_core = tf.shape(features["input_ids"])[0]
inp = tf.transpose(features["input_ids"], [1, 0])
seg_id = tf.transpose(features["segment_ids"], [1, 0])
inp_mask = tf.transpose(features["input_mask"], [1, 0])
label = tf.reshape(features["label_ids"], [bsz_per_core])
xlnet_config = xlnet.XLNetConfig(json_path=FLAGS.model_config_path)
run_config = xlnet.create_run_config(is_training, True, FLAGS)
xlnet_model = xlnet.XLNetModel(
xlnet_config=xlnet_config,
run_config=run_config,
input_ids=inp,
seg_ids=seg_id,
input_mask=inp_mask)
summary = xlnet_model.get_pooled_out(FLAGS.summary_type, FLAGS.use_summ_proj)
with tf.variable_scope("model", reuse=tf.AUTO_REUSE):
per_example_loss, logits = modeling.regression_loss(
hidden=summary,
labels=label,
initializer=xlnet_model.get_initializer(),
scope="regression_{}".format(FLAGS.task_name.lower()),
return_logits=True)
total_loss = tf.reduce_mean(per_example_loss)
return total_loss, per_example_loss, logits
def get_qa_outputs(FLAGS, features, is_training):
"""Loss for downstream span-extraction QA tasks such as SQuAD."""
inp = tf.transpose(features["input_ids"], [1, 0])
seg_id = tf.transpose(features["segment_ids"], [1, 0])
inp_mask = tf.transpose(features["input_mask"], [1, 0])
cls_index = tf.reshape(features["cls_index"], [-1])
seq_len = tf.shape(inp)[0]
xlnet_config = xlnet.XLNetConfig(json_path=FLAGS.model_config_path)
run_config = xlnet.create_run_config(is_training, True, FLAGS)
xlnet_model = xlnet.XLNetModel(
xlnet_config=xlnet_config,
run_config=run_config,
input_ids=inp,
seg_ids=seg_id,
input_mask=inp_mask)
output = xlnet_model.get_sequence_output()
initializer = xlnet_model.get_initializer()
return_dict = {}
# invalid position mask such as query and special symbols (PAD, SEP, CLS)
p_mask = features["p_mask"]
# logit of the start position
with tf.variable_scope("start_logits"):
start_logits = tf.layers.dense(
output,
1,
kernel_initializer=initializer)
start_logits = tf.transpose(tf.squeeze(start_logits, -1), [1, 0])
start_logits_masked = start_logits * (1 - p_mask) - 1e30 * p_mask
start_log_probs = tf.nn.log_softmax(start_logits_masked, -1)
# logit of the end position
with tf.variable_scope("end_logits"):
if is_training:
# during training, compute the end logits based on the
# ground truth of the start position
start_positions = tf.reshape(features["start_positions"], [-1])
start_index = tf.one_hot(start_positions, depth=seq_len, axis=-1,
dtype=tf.float32)
start_features = tf.einsum("lbh,bl->bh", output, start_index)
start_features = tf.tile(start_features[None], [seq_len, 1, 1])
end_logits = tf.layers.dense(
tf.concat([output, start_features], axis=-1), xlnet_config.d_model,
kernel_initializer=initializer, activation=tf.tanh, name="dense_0")
end_logits = tf.contrib.layers.layer_norm(
end_logits, begin_norm_axis=-1)
end_logits = tf.layers.dense(
end_logits, 1,
kernel_initializer=initializer,
name="dense_1")
end_logits = tf.transpose(tf.squeeze(end_logits, -1), [1, 0])
end_logits_masked = end_logits * (1 - p_mask) - 1e30 * p_mask
end_log_probs = tf.nn.log_softmax(end_logits_masked, -1)
else:
# during inference, compute the end logits based on beam search
start_top_log_probs, start_top_index = tf.nn.top_k(
start_log_probs, k=FLAGS.start_n_top)
start_index = tf.one_hot(start_top_index,
depth=seq_len, axis=-1, dtype=tf.float32)
start_features = tf.einsum("lbh,bkl->bkh", output, start_index)
end_input = tf.tile(output[:, :, None],
[1, 1, FLAGS.start_n_top, 1])
start_features = tf.tile(start_features[None],
[seq_len, 1, 1, 1])
end_input = tf.concat([end_input, start_features], axis=-1)
end_logits = tf.layers.dense(
end_input,
xlnet_config.d_model,
kernel_initializer=initializer,
activation=tf.tanh,
name="dense_0")
end_logits = tf.contrib.layers.layer_norm(end_logits,
begin_norm_axis=-1)
end_logits = tf.layers.dense(
end_logits,
1,
kernel_initializer=initializer,
name="dense_1")
end_logits = tf.reshape(end_logits, [seq_len, -1, FLAGS.start_n_top])
end_logits = tf.transpose(end_logits, [1, 2, 0])
end_logits_masked = end_logits * (
1 - p_mask[:, None]) - 1e30 * p_mask[:, None]
end_log_probs = tf.nn.log_softmax(end_logits_masked, -1)
end_top_log_probs, end_top_index = tf.nn.top_k(
end_log_probs, k=FLAGS.end_n_top)
end_top_log_probs = tf.reshape(
end_top_log_probs,
[-1, FLAGS.start_n_top * FLAGS.end_n_top])
end_top_index = tf.reshape(
end_top_index,
[-1, FLAGS.start_n_top * FLAGS.end_n_top])
if is_training:
return_dict["start_log_probs"] = start_log_probs
return_dict["end_log_probs"] = end_log_probs
else:
return_dict["start_top_log_probs"] = start_top_log_probs
return_dict["start_top_index"] = start_top_index
return_dict["end_top_log_probs"] = end_top_log_probs
return_dict["end_top_index"] = end_top_index
# an additional layer to predict answerability
with tf.variable_scope("answer_class"):
# get the representation of CLS
cls_index = tf.one_hot(cls_index, seq_len, axis=-1, dtype=tf.float32)
cls_feature = tf.einsum("lbh,bl->bh", output, cls_index)
# get the representation of START
start_p = tf.nn.softmax(start_logits_masked, axis=-1,
name="softmax_start")
start_feature = tf.einsum("lbh,bl->bh", output, start_p)
# note(zhiliny): no dependency on end_feature so that we can obtain
# one single `cls_logits` for each sample
ans_feature = tf.concat([start_feature, cls_feature], -1)
ans_feature = tf.layers.dense(
ans_feature,
xlnet_config.d_model,
activation=tf.tanh,
kernel_initializer=initializer, name="dense_0")
ans_feature = tf.layers.dropout(ans_feature, FLAGS.dropout,
training=is_training)
cls_logits = tf.layers.dense(
ans_feature,
1,
kernel_initializer=initializer,
name="dense_1",
use_bias=False)
cls_logits = tf.squeeze(cls_logits, -1)
return_dict["cls_logits"] = cls_logits
return return_dict
def get_race_loss(FLAGS, features, is_training):
"""Loss for downstream multi-choice QA tasks such as RACE."""
bsz_per_core = tf.shape(features["input_ids"])[0]
def _transform_features(feature):
out = tf.reshape(feature, [bsz_per_core, 4, -1])
out = tf.transpose(out, [2, 0, 1])
out = tf.reshape(out, [-1, bsz_per_core * 4])
return out
inp = _transform_features(features["input_ids"])
seg_id = _transform_features(features["segment_ids"])
inp_mask = _transform_features(features["input_mask"])
label = tf.reshape(features["label_ids"], [bsz_per_core])
xlnet_config = xlnet.XLNetConfig(json_path=FLAGS.model_config_path)
run_config = xlnet.create_run_config(is_training, True, FLAGS)
xlnet_model = xlnet.XLNetModel(
xlnet_config=xlnet_config,
run_config=run_config,
input_ids=inp,
seg_ids=seg_id,
input_mask=inp_mask)
summary = xlnet_model.get_pooled_out(FLAGS.summary_type, FLAGS.use_summ_proj)
with tf.variable_scope("logits"):
logits = tf.layers.dense(summary, 1,
kernel_initializer=xlnet_model.get_initializer())
logits = tf.reshape(logits, [bsz_per_core, 4])
one_hot_target = tf.one_hot(label, 4)
per_example_loss = -tf.reduce_sum(
tf.nn.log_softmax(logits) * one_hot_target, -1)
total_loss = tf.reduce_mean(per_example_loss)
return total_loss, per_example_loss, logits