forked from zihangdai/xlnet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_classifier.py
855 lines (695 loc) · 29.3 KB
/
run_classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from os.path import join
from absl import flags
import os
import sys
import csv
import collections
import numpy as np
import time
import math
import json
import random
from copy import copy
from collections import defaultdict as dd
import absl.logging as _logging # pylint: disable=unused-import
import tensorflow as tf
import sentencepiece as spm
from data_utils import SEP_ID, VOCAB_SIZE, CLS_ID
import model_utils
import function_builder
from classifier_utils import PaddingInputExample
from classifier_utils import convert_single_example
from prepro_utils import preprocess_text, encode_ids
# Model
flags.DEFINE_string("model_config_path", default=None,
help="Model config path.")
flags.DEFINE_float("dropout", default=0.1,
help="Dropout rate.")
flags.DEFINE_float("dropatt", default=0.1,
help="Attention dropout rate.")
flags.DEFINE_integer("clamp_len", default=-1,
help="Clamp length")
flags.DEFINE_string("summary_type", default="last",
help="Method used to summarize a sequence into a compact vector.")
flags.DEFINE_bool("use_summ_proj", default=True,
help="Whether to use projection for summarizing sequences.")
flags.DEFINE_bool("use_bfloat16", False,
help="Whether to use bfloat16.")
# Parameter initialization
flags.DEFINE_enum("init", default="normal",
enum_values=["normal", "uniform"],
help="Initialization method.")
flags.DEFINE_float("init_std", default=0.02,
help="Initialization std when init is normal.")
flags.DEFINE_float("init_range", default=0.1,
help="Initialization std when init is uniform.")
# I/O paths
flags.DEFINE_bool("overwrite_data", default=False,
help="If False, will use cached data if available.")
flags.DEFINE_string("init_checkpoint", default=None,
help="checkpoint path for initializing the model. "
"Could be a pretrained model or a finetuned model.")
flags.DEFINE_string("output_dir", default="",
help="Output dir for TF records.")
flags.DEFINE_string("spiece_model_file", default="",
help="Sentence Piece model path.")
flags.DEFINE_string("model_dir", default="",
help="Directory for saving the finetuned model.")
flags.DEFINE_string("data_dir", default="",
help="Directory for input data.")
# TPUs and machines
flags.DEFINE_bool("use_tpu", default=False, help="whether to use TPU.")
flags.DEFINE_integer("num_hosts", default=1, help="How many TPU hosts.")
flags.DEFINE_integer("num_core_per_host", default=8,
help="8 for TPU v2 and v3-8, 16 for larger TPU v3 pod. In the context "
"of GPU training, it refers to the number of GPUs used.")
flags.DEFINE_string("tpu_job_name", default=None, help="TPU worker job name.")
flags.DEFINE_string("tpu", default=None, help="TPU name.")
flags.DEFINE_string("tpu_zone", default=None, help="TPU zone.")
flags.DEFINE_string("gcp_project", default=None, help="gcp project.")
flags.DEFINE_string("master", default=None, help="master")
flags.DEFINE_integer("iterations", default=1000,
help="number of iterations per TPU training loop.")
# training
flags.DEFINE_bool("do_train", default=False, help="whether to do training")
flags.DEFINE_integer("train_steps", default=1000,
help="Number of training steps")
flags.DEFINE_integer("warmup_steps", default=0, help="number of warmup steps")
flags.DEFINE_float("learning_rate", default=1e-5, help="initial learning rate")
flags.DEFINE_float("lr_layer_decay_rate", 1.0,
"Top layer: lr[L] = FLAGS.learning_rate."
"Low layer: lr[l-1] = lr[l] * lr_layer_decay_rate.")
flags.DEFINE_float("min_lr_ratio", default=0.0,
help="min lr ratio for cos decay.")
flags.DEFINE_float("clip", default=1.0, help="Gradient clipping")
flags.DEFINE_integer("max_save", default=0,
help="Max number of checkpoints to save. Use 0 to save all.")
flags.DEFINE_integer("save_steps", default=None,
help="Save the model for every save_steps. "
"If None, not to save any model.")
flags.DEFINE_integer("train_batch_size", default=8,
help="Batch size for training")
flags.DEFINE_float("weight_decay", default=0.00, help="Weight decay rate")
flags.DEFINE_float("adam_epsilon", default=1e-8, help="Adam epsilon")
flags.DEFINE_string("decay_method", default="poly", help="poly or cos")
# evaluation
flags.DEFINE_bool("do_eval", default=False, help="whether to do eval")
flags.DEFINE_bool("do_predict", default=False, help="whether to do prediction")
flags.DEFINE_float("predict_threshold", default=0,
help="Threshold for binary prediction.")
flags.DEFINE_string("eval_split", default="dev", help="could be dev or test")
flags.DEFINE_integer("eval_batch_size", default=128,
help="batch size for evaluation")
flags.DEFINE_integer("predict_batch_size", default=128,
help="batch size for prediction.")
flags.DEFINE_string("predict_dir", default=None,
help="Dir for saving prediction files.")
flags.DEFINE_bool("eval_all_ckpt", default=False,
help="Eval all ckpts. If False, only evaluate the last one.")
flags.DEFINE_string("predict_ckpt", default=None,
help="Ckpt path for do_predict. If None, use the last one.")
# task specific
flags.DEFINE_string("task_name", default=None, help="Task name")
flags.DEFINE_integer("max_seq_length", default=128, help="Max sequence length")
flags.DEFINE_integer("shuffle_buffer", default=2048,
help="Buffer size used for shuffle.")
flags.DEFINE_integer("num_passes", default=1,
help="Num passes for processing training data. "
"This is use to batch data without loss for TPUs.")
flags.DEFINE_bool("uncased", default=False,
help="Use uncased.")
flags.DEFINE_string("cls_scope", default=None,
help="Classifier layer scope.")
flags.DEFINE_bool("is_regression", default=False,
help="Whether it's a regression task.")
FLAGS = flags.FLAGS
class InputExample(object):
"""A single training/test example for simple sequence classification."""
def __init__(self, guid, text_a, text_b=None, label=None):
"""Constructs a InputExample.
Args:
guid: Unique id for the example.
text_a: string. The untokenized text of the first sequence. For single
sequence tasks, only this sequence must be specified.
text_b: (Optional) string. The untokenized text of the second sequence.
Only must be specified for sequence pair tasks.
label: (Optional) string. The label of the example. This should be
specified for train and dev examples, but not for test examples.
"""
self.guid = guid
self.text_a = text_a
self.text_b = text_b
self.label = label
class DataProcessor(object):
"""Base class for data converters for sequence classification data sets."""
def get_train_examples(self, data_dir):
"""Gets a collection of `InputExample`s for the train set."""
raise NotImplementedError()
def get_dev_examples(self, data_dir):
"""Gets a collection of `InputExample`s for the dev set."""
raise NotImplementedError()
def get_test_examples(self, data_dir):
"""Gets a collection of `InputExample`s for prediction."""
raise NotImplementedError()
def get_labels(self):
"""Gets the list of labels for this data set."""
raise NotImplementedError()
@classmethod
def _read_tsv(cls, input_file, quotechar=None):
"""Reads a tab separated value file."""
with tf.gfile.Open(input_file, "r") as f:
reader = csv.reader(f, delimiter="\t", quotechar=quotechar)
lines = []
for line in reader:
if len(line) == 0: continue
lines.append(line)
return lines
class GLUEProcessor(DataProcessor):
def __init__(self):
self.train_file = "train.tsv"
self.dev_file = "dev.tsv"
self.test_file = "test.tsv"
self.label_column = None
self.text_a_column = None
self.text_b_column = None
self.contains_header = True
self.test_text_a_column = None
self.test_text_b_column = None
self.test_contains_header = True
def get_train_examples(self, data_dir):
"""See base class."""
return self._create_examples(
self._read_tsv(os.path.join(data_dir, self.train_file)), "train")
def get_dev_examples(self, data_dir):
"""See base class."""
return self._create_examples(
self._read_tsv(os.path.join(data_dir, self.dev_file)), "dev")
def get_test_examples(self, data_dir):
"""See base class."""
if self.test_text_a_column is None:
self.test_text_a_column = self.text_a_column
if self.test_text_b_column is None:
self.test_text_b_column = self.text_b_column
return self._create_examples(
self._read_tsv(os.path.join(data_dir, self.test_file)), "test")
def get_labels(self):
"""See base class."""
return ["0", "1"]
def _create_examples(self, lines, set_type):
"""Creates examples for the training and dev sets."""
examples = []
for (i, line) in enumerate(lines):
if i == 0 and self.contains_header and set_type != "test":
continue
if i == 0 and self.test_contains_header and set_type == "test":
continue
guid = "%s-%s" % (set_type, i)
a_column = (self.text_a_column if set_type != "test" else
self.test_text_a_column)
b_column = (self.text_b_column if set_type != "test" else
self.test_text_b_column)
# there are some incomplete lines in QNLI
if len(line) <= a_column:
tf.logging.warning('Incomplete line, ignored.')
continue
text_a = line[a_column]
if b_column is not None:
if len(line) <= b_column:
tf.logging.warning('Incomplete line, ignored.')
continue
text_b = line[b_column]
else:
text_b = None
if set_type == "test":
label = self.get_labels()[0]
else:
if len(line) <= self.label_column:
tf.logging.warning('Incomplete line, ignored.')
continue
label = line[self.label_column]
examples.append(
InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
return examples
class Yelp5Processor(DataProcessor):
def get_train_examples(self, data_dir):
return self._create_examples(os.path.join(data_dir, "train.csv"))
def get_dev_examples(self, data_dir):
return self._create_examples(os.path.join(data_dir, "test.csv"))
def get_labels(self):
"""See base class."""
return ["1", "2", "3", "4", "5"]
def _create_examples(self, input_file):
"""Creates examples for the training and dev sets."""
examples = []
with tf.gfile.Open(input_file) as f:
reader = csv.reader(f)
for i, line in enumerate(reader):
label = line[0]
text_a = line[1].replace('""', '"').replace('\\"', '"')
examples.append(
InputExample(guid=str(i), text_a=text_a, text_b=None, label=label))
return examples
class ImdbProcessor(DataProcessor):
def get_labels(self):
return ["neg", "pos"]
def get_train_examples(self, data_dir):
return self._create_examples(os.path.join(data_dir, "train"))
def get_dev_examples(self, data_dir):
return self._create_examples(os.path.join(data_dir, "test"))
def _create_examples(self, data_dir):
examples = []
for label in ["neg", "pos"]:
cur_dir = os.path.join(data_dir, label)
for filename in tf.gfile.ListDirectory(cur_dir):
if not filename.endswith("txt"): continue
path = os.path.join(cur_dir, filename)
with tf.gfile.Open(path) as f:
text = f.read().strip().replace("<br />", " ")
examples.append(InputExample(
guid="unused_id", text_a=text, text_b=None, label=label))
return examples
class MnliMatchedProcessor(GLUEProcessor):
def __init__(self):
super(MnliMatchedProcessor, self).__init__()
self.dev_file = "dev_matched.tsv"
self.test_file = "test_matched.tsv"
self.label_column = -1
self.text_a_column = 8
self.text_b_column = 9
def get_labels(self):
return ["contradiction", "entailment", "neutral"]
class MnliMismatchedProcessor(MnliMatchedProcessor):
def __init__(self):
super(MnliMismatchedProcessor, self).__init__()
self.dev_file = "dev_mismatched.tsv"
self.test_file = "test_mismatched.tsv"
class StsbProcessor(GLUEProcessor):
def __init__(self):
super(StsbProcessor, self).__init__()
self.label_column = 9
self.text_a_column = 7
self.text_b_column = 8
def get_labels(self):
return [0.0]
def _create_examples(self, lines, set_type):
"""Creates examples for the training and dev sets."""
examples = []
for (i, line) in enumerate(lines):
if i == 0 and self.contains_header and set_type != "test":
continue
if i == 0 and self.test_contains_header and set_type == "test":
continue
guid = "%s-%s" % (set_type, i)
a_column = (self.text_a_column if set_type != "test" else
self.test_text_a_column)
b_column = (self.text_b_column if set_type != "test" else
self.test_text_b_column)
# there are some incomplete lines in QNLI
if len(line) <= a_column:
tf.logging.warning('Incomplete line, ignored.')
continue
text_a = line[a_column]
if b_column is not None:
if len(line) <= b_column:
tf.logging.warning('Incomplete line, ignored.')
continue
text_b = line[b_column]
else:
text_b = None
if set_type == "test":
label = self.get_labels()[0]
else:
if len(line) <= self.label_column:
tf.logging.warning('Incomplete line, ignored.')
continue
label = float(line[self.label_column])
examples.append(
InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
return examples
def file_based_convert_examples_to_features(
examples, label_list, max_seq_length, tokenize_fn, output_file,
num_passes=1):
"""Convert a set of `InputExample`s to a TFRecord file."""
# do not create duplicated records
if tf.gfile.Exists(output_file) and not FLAGS.overwrite_data:
tf.logging.info("Do not overwrite tfrecord {} exists.".format(output_file))
return
tf.logging.info("Create new tfrecord {}.".format(output_file))
writer = tf.python_io.TFRecordWriter(output_file)
np.random.shuffle(examples)
if num_passes > 1:
examples *= num_passes
for (ex_index, example) in enumerate(examples):
if ex_index % 10000 == 0:
tf.logging.info("Writing example {} of {}".format(ex_index,
len(examples)))
feature = convert_single_example(ex_index, example, label_list,
max_seq_length, tokenize_fn)
def create_int_feature(values):
f = tf.train.Feature(int64_list=tf.train.Int64List(value=list(values)))
return f
def create_float_feature(values):
f = tf.train.Feature(float_list=tf.train.FloatList(value=list(values)))
return f
features = collections.OrderedDict()
features["input_ids"] = create_int_feature(feature.input_ids)
features["input_mask"] = create_float_feature(feature.input_mask)
features["segment_ids"] = create_int_feature(feature.segment_ids)
if label_list is not None:
features["label_ids"] = create_int_feature([feature.label_id])
else:
features["label_ids"] = create_float_feature([float(feature.label_id)])
features["is_real_example"] = create_int_feature(
[int(feature.is_real_example)])
tf_example = tf.train.Example(features=tf.train.Features(feature=features))
writer.write(tf_example.SerializeToString())
writer.close()
def file_based_input_fn_builder(input_file, seq_length, is_training,
drop_remainder):
"""Creates an `input_fn` closure to be passed to TPUEstimator."""
name_to_features = {
"input_ids": tf.FixedLenFeature([seq_length], tf.int64),
"input_mask": tf.FixedLenFeature([seq_length], tf.float32),
"segment_ids": tf.FixedLenFeature([seq_length], tf.int64),
"label_ids": tf.FixedLenFeature([], tf.int64),
"is_real_example": tf.FixedLenFeature([], tf.int64),
}
if FLAGS.is_regression:
name_to_features["label_ids"] = tf.FixedLenFeature([], tf.float32)
tf.logging.info("Input tfrecord file {}".format(input_file))
def _decode_record(record, name_to_features):
"""Decodes a record to a TensorFlow example."""
example = tf.parse_single_example(record, name_to_features)
# tf.Example only supports tf.int64, but the TPU only supports tf.int32.
# So cast all int64 to int32.
for name in list(example.keys()):
t = example[name]
if t.dtype == tf.int64:
t = tf.cast(t, tf.int32)
example[name] = t
return example
def input_fn(params, input_context=None):
"""The actual input function."""
if FLAGS.use_tpu:
batch_size = params["batch_size"]
elif is_training:
batch_size = FLAGS.train_batch_size
elif FLAGS.do_eval:
batch_size = FLAGS.eval_batch_size
else:
batch_size = FLAGS.predict_batch_size
d = tf.data.TFRecordDataset(input_file)
# Shard the dataset to difference devices
if input_context is not None:
tf.logging.info("Input pipeline id %d out of %d",
input_context.input_pipeline_id, input_context.num_replicas_in_sync)
d = d.shard(input_context.num_input_pipelines,
input_context.input_pipeline_id)
# For training, we want a lot of parallel reading and shuffling.
# For eval, we want no shuffling and parallel reading doesn't matter.
if is_training:
d = d.shuffle(buffer_size=FLAGS.shuffle_buffer)
d = d.repeat()
d = d.apply(
tf.contrib.data.map_and_batch(
lambda record: _decode_record(record, name_to_features),
batch_size=batch_size,
drop_remainder=drop_remainder))
return d
return input_fn
def get_model_fn(n_class):
def model_fn(features, labels, mode, params):
#### Training or Evaluation
is_training = (mode == tf.estimator.ModeKeys.TRAIN)
#### Get loss from inputs
if FLAGS.is_regression:
(total_loss, per_example_loss, logits
) = function_builder.get_regression_loss(FLAGS, features, is_training)
else:
(total_loss, per_example_loss, logits
) = function_builder.get_classification_loss(
FLAGS, features, n_class, is_training)
#### Check model parameters
num_params = sum([np.prod(v.shape) for v in tf.trainable_variables()])
tf.logging.info('#params: {}'.format(num_params))
#### load pretrained models
scaffold_fn = model_utils.init_from_checkpoint(FLAGS)
#### Evaluation mode
if mode == tf.estimator.ModeKeys.EVAL:
assert FLAGS.num_hosts == 1
def metric_fn(per_example_loss, label_ids, logits, is_real_example):
predictions = tf.argmax(logits, axis=-1, output_type=tf.int32)
eval_input_dict = {
'labels': label_ids,
'predictions': predictions,
'weights': is_real_example
}
accuracy = tf.metrics.accuracy(**eval_input_dict)
loss = tf.metrics.mean(values=per_example_loss, weights=is_real_example)
return {
'eval_accuracy': accuracy,
'eval_loss': loss}
def regression_metric_fn(
per_example_loss, label_ids, logits, is_real_example):
loss = tf.metrics.mean(values=per_example_loss, weights=is_real_example)
pearsonr = tf.contrib.metrics.streaming_pearson_correlation(
logits, label_ids, weights=is_real_example)
return {'eval_loss': loss, 'eval_pearsonr': pearsonr}
is_real_example = tf.cast(features["is_real_example"], dtype=tf.float32)
#### Constucting evaluation TPUEstimatorSpec with new cache.
label_ids = tf.reshape(features['label_ids'], [-1])
if FLAGS.is_regression:
metric_fn = regression_metric_fn
else:
metric_fn = metric_fn
metric_args = [per_example_loss, label_ids, logits, is_real_example]
if FLAGS.use_tpu:
eval_spec = tf.contrib.tpu.TPUEstimatorSpec(
mode=mode,
loss=total_loss,
eval_metrics=(metric_fn, metric_args),
scaffold_fn=scaffold_fn)
else:
eval_spec = tf.estimator.EstimatorSpec(
mode=mode,
loss=total_loss,
eval_metric_ops=metric_fn(*metric_args))
return eval_spec
elif mode == tf.estimator.ModeKeys.PREDICT:
label_ids = tf.reshape(features["label_ids"], [-1])
predictions = {
"logits": logits,
"labels": label_ids,
"is_real": features["is_real_example"]
}
if FLAGS.use_tpu:
output_spec = tf.contrib.tpu.TPUEstimatorSpec(
mode=mode, predictions=predictions, scaffold_fn=scaffold_fn)
else:
output_spec = tf.estimator.EstimatorSpec(
mode=mode, predictions=predictions)
return output_spec
#### Configuring the optimizer
train_op, learning_rate, _ = model_utils.get_train_op(FLAGS, total_loss)
monitor_dict = {}
monitor_dict["lr"] = learning_rate
#### Constucting training TPUEstimatorSpec with new cache.
if FLAGS.use_tpu:
#### Creating host calls
if not FLAGS.is_regression:
label_ids = tf.reshape(features['label_ids'], [-1])
predictions = tf.argmax(logits, axis=-1, output_type=label_ids.dtype)
is_correct = tf.equal(predictions, label_ids)
accuracy = tf.reduce_mean(tf.cast(is_correct, tf.float32))
monitor_dict["accuracy"] = accuracy
host_call = function_builder.construct_scalar_host_call(
monitor_dict=monitor_dict,
model_dir=FLAGS.model_dir,
prefix="train/",
reduce_fn=tf.reduce_mean)
else:
host_call = None
train_spec = tf.contrib.tpu.TPUEstimatorSpec(
mode=mode, loss=total_loss, train_op=train_op, host_call=host_call,
scaffold_fn=scaffold_fn)
else:
train_spec = tf.estimator.EstimatorSpec(
mode=mode, loss=total_loss, train_op=train_op)
return train_spec
return model_fn
def main(_):
tf.logging.set_verbosity(tf.logging.INFO)
#### Validate flags
if FLAGS.save_steps is not None:
FLAGS.iterations = min(FLAGS.iterations, FLAGS.save_steps)
if FLAGS.do_predict:
predict_dir = FLAGS.predict_dir
if not tf.gfile.Exists(predict_dir):
tf.gfile.MakeDirs(predict_dir)
processors = {
"mnli_matched": MnliMatchedProcessor,
"mnli_mismatched": MnliMismatchedProcessor,
'sts-b': StsbProcessor,
'imdb': ImdbProcessor,
"yelp5": Yelp5Processor
}
if not FLAGS.do_train and not FLAGS.do_eval and not FLAGS.do_predict:
raise ValueError(
"At least one of `do_train`, `do_eval, `do_predict` or "
"`do_submit` must be True.")
if not tf.gfile.Exists(FLAGS.output_dir):
tf.gfile.MakeDirs(FLAGS.output_dir)
task_name = FLAGS.task_name.lower()
if task_name not in processors:
raise ValueError("Task not found: %s" % (task_name))
processor = processors[task_name]()
label_list = processor.get_labels() if not FLAGS.is_regression else None
sp = spm.SentencePieceProcessor()
sp.Load(FLAGS.spiece_model_file)
def tokenize_fn(text):
text = preprocess_text(text, lower=FLAGS.uncased)
return encode_ids(sp, text)
run_config = model_utils.configure_tpu(FLAGS)
model_fn = get_model_fn(len(label_list) if label_list is not None else None)
spm_basename = os.path.basename(FLAGS.spiece_model_file)
# If TPU is not available, this will fall back to normal Estimator on CPU
# or GPU.
if FLAGS.use_tpu:
estimator = tf.contrib.tpu.TPUEstimator(
use_tpu=FLAGS.use_tpu,
model_fn=model_fn,
config=run_config,
train_batch_size=FLAGS.train_batch_size,
predict_batch_size=FLAGS.predict_batch_size,
eval_batch_size=FLAGS.eval_batch_size)
else:
estimator = tf.estimator.Estimator(
model_fn=model_fn,
config=run_config)
if FLAGS.do_train:
train_file_base = "{}.len-{}.train.tf_record".format(
spm_basename, FLAGS.max_seq_length)
train_file = os.path.join(FLAGS.output_dir, train_file_base)
tf.logging.info("Use tfrecord file {}".format(train_file))
train_examples = processor.get_train_examples(FLAGS.data_dir)
tf.logging.info("Num of train samples: {}".format(len(train_examples)))
file_based_convert_examples_to_features(
train_examples, label_list, FLAGS.max_seq_length, tokenize_fn,
train_file, FLAGS.num_passes)
train_input_fn = file_based_input_fn_builder(
input_file=train_file,
seq_length=FLAGS.max_seq_length,
is_training=True,
drop_remainder=True)
estimator.train(input_fn=train_input_fn, max_steps=FLAGS.train_steps)
if FLAGS.do_eval or FLAGS.do_predict:
if FLAGS.eval_split == "dev":
eval_examples = processor.get_dev_examples(FLAGS.data_dir)
else:
eval_examples = processor.get_test_examples(FLAGS.data_dir)
tf.logging.info("Num of eval samples: {}".format(len(eval_examples)))
if FLAGS.do_eval:
# TPU requires a fixed batch size for all batches, therefore the number
# of examples must be a multiple of the batch size, or else examples
# will get dropped. So we pad with fake examples which are ignored
# later on. These do NOT count towards the metric (all tf.metrics
# support a per-instance weight, and these get a weight of 0.0).
#
# Modified in XL: We also adopt the same mechanism for GPUs.
while len(eval_examples) % FLAGS.eval_batch_size != 0:
eval_examples.append(PaddingInputExample())
eval_file_base = "{}.len-{}.{}.eval.tf_record".format(
spm_basename, FLAGS.max_seq_length, FLAGS.eval_split)
eval_file = os.path.join(FLAGS.output_dir, eval_file_base)
file_based_convert_examples_to_features(
eval_examples, label_list, FLAGS.max_seq_length, tokenize_fn,
eval_file)
assert len(eval_examples) % FLAGS.eval_batch_size == 0
eval_steps = int(len(eval_examples) // FLAGS.eval_batch_size)
eval_input_fn = file_based_input_fn_builder(
input_file=eval_file,
seq_length=FLAGS.max_seq_length,
is_training=False,
drop_remainder=True)
# Filter out all checkpoints in the directory
steps_and_files = []
filenames = tf.gfile.ListDirectory(FLAGS.model_dir)
for filename in filenames:
if filename.endswith(".index"):
ckpt_name = filename[:-6]
cur_filename = join(FLAGS.model_dir, ckpt_name)
global_step = int(cur_filename.split("-")[-1])
tf.logging.info("Add {} to eval list.".format(cur_filename))
steps_and_files.append([global_step, cur_filename])
steps_and_files = sorted(steps_and_files, key=lambda x: x[0])
# Decide whether to evaluate all ckpts
if not FLAGS.eval_all_ckpt:
steps_and_files = steps_and_files[-1:]
eval_results = []
for global_step, filename in sorted(steps_and_files, key=lambda x: x[0]):
ret = estimator.evaluate(
input_fn=eval_input_fn,
steps=eval_steps,
checkpoint_path=filename)
ret["step"] = global_step
ret["path"] = filename
eval_results.append(ret)
tf.logging.info("=" * 80)
log_str = "Eval result | "
for key, val in sorted(ret.items(), key=lambda x: x[0]):
log_str += "{} {} | ".format(key, val)
tf.logging.info(log_str)
key_name = "eval_pearsonr" if FLAGS.is_regression else "eval_accuracy"
eval_results.sort(key=lambda x: x[key_name], reverse=True)
tf.logging.info("=" * 80)
log_str = "Best result | "
for key, val in sorted(eval_results[0].items(), key=lambda x: x[0]):
log_str += "{} {} | ".format(key, val)
tf.logging.info(log_str)
if FLAGS.do_predict:
eval_file_base = "{}.len-{}.{}.predict.tf_record".format(
spm_basename, FLAGS.max_seq_length, FLAGS.eval_split)
eval_file = os.path.join(FLAGS.output_dir, eval_file_base)
file_based_convert_examples_to_features(
eval_examples, label_list, FLAGS.max_seq_length, tokenize_fn,
eval_file)
pred_input_fn = file_based_input_fn_builder(
input_file=eval_file,
seq_length=FLAGS.max_seq_length,
is_training=False,
drop_remainder=False)
predict_results = []
with tf.gfile.Open(os.path.join(predict_dir, "{}.tsv".format(
task_name)), "w") as fout:
fout.write("index\tprediction\n")
for pred_cnt, result in enumerate(estimator.predict(
input_fn=pred_input_fn,
yield_single_examples=True,
checkpoint_path=FLAGS.predict_ckpt)):
if pred_cnt % 1000 == 0:
tf.logging.info("Predicting submission for example: {}".format(
pred_cnt))
logits = [float(x) for x in result["logits"].flat]
predict_results.append(logits)
if len(logits) == 1:
label_out = logits[0]
elif len(logits) == 2:
if logits[1] - logits[0] > FLAGS.predict_threshold:
label_out = label_list[1]
else:
label_out = label_list[0]
elif len(logits) > 2:
max_index = np.argmax(np.array(logits, dtype=np.float32))
label_out = label_list[max_index]
else:
raise NotImplementedError
fout.write("{}\t{}\n".format(pred_cnt, label_out))
predict_json_path = os.path.join(predict_dir, "{}.logits.json".format(
task_name))
with tf.gfile.Open(predict_json_path, "w") as fp:
json.dump(predict_results, fp, indent=4)
if __name__ == "__main__":
tf.app.run()