forked from zihangdai/xlnet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_race.py
554 lines (441 loc) · 18.6 KB
/
run_race.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from os.path import join
from absl import flags
import os
import csv
import collections
import numpy as np
import time
import math
import json
import random
from copy import copy
from collections import defaultdict as dd
from scipy.stats import pearsonr, spearmanr
from sklearn.metrics import matthews_corrcoef, f1_score
import absl.logging as _logging # pylint: disable=unused-import
import tensorflow as tf
import sentencepiece as spm
from data_utils import SEP_ID, VOCAB_SIZE, CLS_ID
import model_utils
import function_builder
from classifier_utils import PaddingInputExample
from classifier_utils import convert_single_example
from prepro_utils import preprocess_text, encode_ids
# Model
flags.DEFINE_string("model_config_path", default=None,
help="Model config path.")
flags.DEFINE_float("dropout", default=0.1,
help="Dropout rate.")
flags.DEFINE_float("dropatt", default=0.1,
help="Attention dropout rate.")
flags.DEFINE_integer("clamp_len", default=-1,
help="Clamp length")
flags.DEFINE_string("summary_type", default="last",
help="Method used to summarize a sequence into a compact vector.")
flags.DEFINE_bool("use_summ_proj", default=True,
help="Whether to use projection for summarizing sequences.")
flags.DEFINE_bool("use_bfloat16", default=False,
help="Whether to use bfloat16.")
# Parameter initialization
flags.DEFINE_enum("init", default="normal",
enum_values=["normal", "uniform"],
help="Initialization method.")
flags.DEFINE_float("init_std", default=0.02,
help="Initialization std when init is normal.")
flags.DEFINE_float("init_range", default=0.1,
help="Initialization std when init is uniform.")
# I/O paths
flags.DEFINE_bool("overwrite_data", default=False,
help="If False, will use cached data if available.")
flags.DEFINE_string("init_checkpoint", default=None,
help="checkpoint path for initializing the model. "
"Could be a pretrained model or a finetuned model.")
flags.DEFINE_string("output_dir", default="",
help="Output dir for TF records.")
flags.DEFINE_string("spiece_model_file", default="",
help="Sentence Piece model path.")
flags.DEFINE_string("model_dir", default="",
help="Directory for saving the finetuned model.")
flags.DEFINE_string("data_dir", default="",
help="Directory for input data.")
# TPUs and machines
flags.DEFINE_bool("use_tpu", default=False, help="whether to use TPU.")
flags.DEFINE_integer("num_hosts", default=1, help="How many TPU hosts.")
flags.DEFINE_integer("num_core_per_host", default=8,
help="8 for TPU v2 and v3-8, 16 for larger TPU v3 pod. In the context "
"of GPU training, it refers to the number of GPUs used.")
flags.DEFINE_string("tpu_job_name", default=None, help="TPU worker job name.")
flags.DEFINE_string("tpu", default=None, help="TPU name.")
flags.DEFINE_string("tpu_zone", default=None, help="TPU zone.")
flags.DEFINE_string("gcp_project", default=None, help="gcp project.")
flags.DEFINE_string("master", default=None, help="master")
flags.DEFINE_integer("iterations", default=1000,
help="number of iterations per TPU training loop.")
# Training
flags.DEFINE_bool("do_train", default=False, help="whether to do training")
flags.DEFINE_integer("train_steps", default=12000,
help="Number of training steps")
flags.DEFINE_integer("warmup_steps", default=0, help="number of warmup steps")
flags.DEFINE_float("learning_rate", default=2e-5, help="initial learning rate")
flags.DEFINE_float("lr_layer_decay_rate", 1.0,
"Top layer: lr[L] = FLAGS.learning_rate."
"Low layer: lr[l-1] = lr[l] * lr_layer_decay_rate.")
flags.DEFINE_float("min_lr_ratio", default=0.0,
help="min lr ratio for cos decay.")
flags.DEFINE_float("clip", default=1.0, help="Gradient clipping")
flags.DEFINE_integer("max_save", default=0,
help="Max number of checkpoints to save. Use 0 to save all.")
flags.DEFINE_integer("save_steps", default=None,
help="Save the model for every save_steps. "
"If None, not to save any model.")
flags.DEFINE_integer("train_batch_size", default=8,
help="Batch size for training. Note that batch size 1 corresponds to "
"4 sequences: one paragraph + one quesetion + 4 candidate answers.")
flags.DEFINE_float("weight_decay", default=0.00, help="weight decay rate")
flags.DEFINE_float("adam_epsilon", default=1e-6, help="adam epsilon")
flags.DEFINE_string("decay_method", default="poly", help="poly or cos")
# Evaluation
flags.DEFINE_bool("do_eval", default=False, help="whether to do eval")
flags.DEFINE_string("eval_split", default="dev",
help="could be dev or test")
flags.DEFINE_integer("eval_batch_size", default=32,
help="Batch size for evaluation.")
# Data config
flags.DEFINE_integer("max_seq_length", default=512,
help="Max length for the paragraph.")
flags.DEFINE_integer("max_qa_length", default=128,
help="Max length for the concatenated question and answer.")
flags.DEFINE_integer("shuffle_buffer", default=2048,
help="Buffer size used for shuffle.")
flags.DEFINE_bool("uncased", default=False,
help="Use uncased.")
flags.DEFINE_bool("high_only", default=False,
help="Evaluate on high school only.")
flags.DEFINE_bool("middle_only", default=False,
help="Evaluate on middle school only.")
FLAGS = flags.FLAGS
SEG_ID_A = 0
SEG_ID_B = 1
SEG_ID_CLS = 2
SEG_ID_SEP = 3
SEG_ID_PAD = 4
class PaddingInputExample(object):
"""Fake example so the num input examples is a multiple of the batch size.
When running eval/predict on the TPU, we need to pad the number of examples
to be a multiple of the batch size, because the TPU requires a fixed batch
size. The alternative is to drop the last batch, which is bad because it means
the entire output data won't be generated.
We use this class instead of `None` because treating `None` as padding
battches could cause silent errors.
"""
class InputFeatures(object):
"""A single set of features of data."""
def __init__(self,
input_ids,
input_mask,
segment_ids,
label_id,
is_real_example=True):
self.input_ids = input_ids
self.input_mask = input_mask
self.segment_ids = segment_ids
self.label_id = label_id
self.is_real_example = is_real_example
def convert_single_example(example, tokenize_fn):
"""Converts a single `InputExample` into a single `InputFeatures`."""
if isinstance(example, PaddingInputExample):
return InputFeatures(
input_ids=[0] * FLAGS.max_seq_length * 4,
input_mask=[1] * FLAGS.max_seq_length * 4,
segment_ids=[0] * FLAGS.max_seq_length * 4,
label_id=0,
is_real_example=False)
input_ids, input_mask, all_seg_ids = [], [], []
tokens_context = tokenize_fn(example.context)
for i in range(len(example.qa_list)):
tokens_qa = tokenize_fn(example.qa_list[i])
if len(tokens_qa) > FLAGS.max_qa_length:
tokens_qa = tokens_qa[- FLAGS.max_qa_length:]
if len(tokens_context) + len(tokens_qa) > FLAGS.max_seq_length - 3:
tokens = tokens_context[: FLAGS.max_seq_length - 3 - len(tokens_qa)]
else:
tokens = tokens_context
segment_ids = [SEG_ID_A] * len(tokens)
tokens.append(SEP_ID)
segment_ids.append(SEG_ID_A)
tokens.extend(tokens_qa)
segment_ids.extend([SEG_ID_B] * len(tokens_qa))
tokens.append(SEP_ID)
segment_ids.append(SEG_ID_B)
tokens.append(CLS_ID)
segment_ids.append(SEG_ID_CLS)
cur_input_ids = tokens
cur_input_mask = [0] * len(cur_input_ids)
if len(cur_input_ids) < FLAGS.max_seq_length:
delta_len = FLAGS.max_seq_length - len(cur_input_ids)
cur_input_ids = [0] * delta_len + cur_input_ids
cur_input_mask = [1] * delta_len + cur_input_mask
segment_ids = [SEG_ID_PAD] * delta_len + segment_ids
assert len(cur_input_ids) == FLAGS.max_seq_length
assert len(cur_input_mask) == FLAGS.max_seq_length
assert len(segment_ids) == FLAGS.max_seq_length
input_ids.extend(cur_input_ids)
input_mask.extend(cur_input_mask)
all_seg_ids.extend(segment_ids)
label_id = example.label
feature = InputFeatures(
input_ids=input_ids,
input_mask=input_mask,
segment_ids=all_seg_ids,
label_id=label_id)
return feature
class InputExample(object):
def __init__(self, context, qa_list, label, level):
self.context = context
self.qa_list = qa_list
self.label = label
self.level = level
def get_examples(data_dir, set_type):
examples = []
for level in ["middle", "high"]:
if level == "middle" and FLAGS.high_only: continue
if level == "high" and FLAGS.middle_only: continue
cur_dir = os.path.join(data_dir, set_type, level)
for filename in tf.gfile.ListDirectory(cur_dir):
cur_path = os.path.join(cur_dir, filename)
with tf.gfile.Open(cur_path) as f:
cur_data = json.load(f)
answers = cur_data["answers"]
options = cur_data["options"]
questions = cur_data["questions"]
context = cur_data["article"]
for i in range(len(answers)):
label = ord(answers[i]) - ord("A")
qa_list = []
question = questions[i]
for j in range(4):
option = options[i][j]
if "_" in question:
qa_cat = question.replace("_", option)
else:
qa_cat = " ".join([question, option])
qa_list.append(qa_cat)
examples.append(InputExample(context, qa_list, label, level))
return examples
def file_based_convert_examples_to_features(examples, tokenize_fn, output_file):
if tf.gfile.Exists(output_file) and not FLAGS.overwrite_data:
return
tf.logging.info("Start writing tfrecord %s.", output_file)
writer = tf.python_io.TFRecordWriter(output_file)
for ex_index, example in enumerate(examples):
if ex_index % 10000 == 0:
tf.logging.info("Writing example %d of %d" % (ex_index, len(examples)))
feature = convert_single_example(example, tokenize_fn)
def create_int_feature(values):
f = tf.train.Feature(int64_list=tf.train.Int64List(value=list(values)))
return f
def create_float_feature(values):
f = tf.train.Feature(float_list=tf.train.FloatList(value=list(values)))
return f
features = collections.OrderedDict()
features["input_ids"] = create_int_feature(feature.input_ids)
features["input_mask"] = create_float_feature(feature.input_mask)
features["segment_ids"] = create_int_feature(feature.segment_ids)
features["label_ids"] = create_int_feature([feature.label_id])
features["is_real_example"] = create_int_feature(
[int(feature.is_real_example)])
tf_example = tf.train.Example(features=tf.train.Features(feature=features))
writer.write(tf_example.SerializeToString())
writer.close()
def file_based_input_fn_builder(input_file, seq_length, is_training,
drop_remainder):
"""Creates an `input_fn` closure to be passed to TPUEstimator."""
name_to_features = {
"input_ids": tf.FixedLenFeature([seq_length * 4], tf.int64),
"input_mask": tf.FixedLenFeature([seq_length * 4], tf.float32),
"segment_ids": tf.FixedLenFeature([seq_length * 4], tf.int64),
"label_ids": tf.FixedLenFeature([], tf.int64),
"is_real_example": tf.FixedLenFeature([], tf.int64),
}
tf.logging.info("Input tfrecord file {}".format(input_file))
def _decode_record(record, name_to_features):
"""Decodes a record to a TensorFlow example."""
example = tf.parse_single_example(record, name_to_features)
# tf.Example only supports tf.int64, but the TPU only supports tf.int32.
# So cast all int64 to int32.
for name in list(example.keys()):
t = example[name]
if t.dtype == tf.int64:
t = tf.cast(t, tf.int32)
example[name] = t
return example
def input_fn(params):
"""The actual input function."""
if FLAGS.use_tpu:
batch_size = params["batch_size"]
elif is_training:
batch_size = FLAGS.train_batch_size
elif FLAGS.do_eval:
batch_size = FLAGS.eval_batch_size
# For training, we want a lot of parallel reading and shuffling.
# For eval, we want no shuffling and parallel reading doesn't matter.
d = tf.data.TFRecordDataset(input_file)
if is_training:
d = d.shuffle(buffer_size=FLAGS.shuffle_buffer)
d = d.repeat()
# d = d.shuffle(buffer_size=100)
d = d.apply(
tf.contrib.data.map_and_batch(
lambda record: _decode_record(record, name_to_features),
batch_size=batch_size,
drop_remainder=drop_remainder))
return d
return input_fn
def get_model_fn():
def model_fn(features, labels, mode, params):
#### Training or Evaluation
is_training = (mode == tf.estimator.ModeKeys.TRAIN)
total_loss, per_example_loss, logits = function_builder.get_race_loss(
FLAGS, features, is_training)
#### Check model parameters
num_params = sum([np.prod(v.shape) for v in tf.trainable_variables()])
tf.logging.info('#params: {}'.format(num_params))
#### load pretrained models
scaffold_fn = model_utils.init_from_checkpoint(FLAGS)
#### Evaluation mode
if mode == tf.estimator.ModeKeys.EVAL:
assert FLAGS.num_hosts == 1
def metric_fn(per_example_loss, label_ids, logits, is_real_example):
predictions = tf.argmax(logits, axis=-1, output_type=tf.int32)
eval_input_dict = {
'labels': label_ids,
'predictions': predictions,
'weights': is_real_example
}
accuracy = tf.metrics.accuracy(**eval_input_dict)
loss = tf.metrics.mean(values=per_example_loss, weights=is_real_example)
return {
'eval_accuracy': accuracy,
'eval_loss': loss}
is_real_example = tf.cast(features["is_real_example"], dtype=tf.float32)
#### Constucting evaluation TPUEstimatorSpec with new cache.
label_ids = tf.reshape(features['label_ids'], [-1])
metric_args = [per_example_loss, label_ids, logits, is_real_example]
if FLAGS.use_tpu:
eval_spec = tf.contrib.tpu.TPUEstimatorSpec(
mode=mode,
loss=total_loss,
eval_metrics=(metric_fn, metric_args),
scaffold_fn=scaffold_fn)
else:
eval_spec = tf.estimator.EstimatorSpec(
mode=mode,
loss=total_loss,
eval_metric_ops=metric_fn(*metric_args))
return eval_spec
#### Configuring the optimizer
train_op, learning_rate, _ = model_utils.get_train_op(FLAGS, total_loss)
monitor_dict = {}
monitor_dict["lr"] = learning_rate
#### Constucting training TPUEstimatorSpec with new cache.
if FLAGS.use_tpu:
#### Creating host calls
host_call = None
train_spec = tf.contrib.tpu.TPUEstimatorSpec(
mode=mode, loss=total_loss, train_op=train_op, host_call=host_call,
scaffold_fn=scaffold_fn)
else:
train_spec = tf.estimator.EstimatorSpec(
mode=mode, loss=total_loss, train_op=train_op)
return train_spec
return model_fn
def main(_):
tf.logging.set_verbosity(tf.logging.INFO)
#### Validate flags
if FLAGS.save_steps is not None:
FLAGS.iterations = min(FLAGS.iterations, FLAGS.save_steps)
if not FLAGS.do_train and not FLAGS.do_eval:
raise ValueError(
"At least one of `do_train` or `do_eval` must be True.")
if not tf.gfile.Exists(FLAGS.output_dir):
tf.gfile.MakeDirs(FLAGS.output_dir)
sp = spm.SentencePieceProcessor()
sp.Load(FLAGS.spiece_model_file)
def tokenize_fn(text):
text = preprocess_text(text, lower=FLAGS.uncased)
return encode_ids(sp, text)
# TPU Configuration
run_config = model_utils.configure_tpu(FLAGS)
model_fn = get_model_fn()
spm_basename = os.path.basename(FLAGS.spiece_model_file)
# If TPU is not available, this will fall back to normal Estimator on CPU
# or GPU.
if FLAGS.use_tpu:
estimator = tf.contrib.tpu.TPUEstimator(
use_tpu=FLAGS.use_tpu,
model_fn=model_fn,
config=run_config,
train_batch_size=FLAGS.train_batch_size,
eval_batch_size=FLAGS.eval_batch_size)
else:
estimator = tf.estimator.Estimator(
model_fn=model_fn,
config=run_config)
if FLAGS.do_train:
train_file_base = "{}.len-{}.train.tf_record".format(
spm_basename, FLAGS.max_seq_length)
train_file = os.path.join(FLAGS.output_dir, train_file_base)
if not tf.gfile.Exists(train_file) or FLAGS.overwrite_data:
train_examples = get_examples(FLAGS.data_dir, "train")
random.shuffle(train_examples)
file_based_convert_examples_to_features(
train_examples, tokenize_fn, train_file)
train_input_fn = file_based_input_fn_builder(
input_file=train_file,
seq_length=FLAGS.max_seq_length,
is_training=True,
drop_remainder=True)
estimator.train(input_fn=train_input_fn, max_steps=FLAGS.train_steps)
if FLAGS.do_eval:
eval_examples = get_examples(FLAGS.data_dir, FLAGS.eval_split)
tf.logging.info("Num of eval samples: {}".format(len(eval_examples)))
# TPU requires a fixed batch size for all batches, therefore the number
# of examples must be a multiple of the batch size, or else examples
# will get dropped. So we pad with fake examples which are ignored
# later on. These do NOT count towards the metric (all tf.metrics
# support a per-instance weight, and these get a weight of 0.0).
#
# Modified in XL: We also adopt the same mechanism for GPUs.
while len(eval_examples) % FLAGS.eval_batch_size != 0:
eval_examples.append(PaddingInputExample())
eval_file_base = "{}.len-{}.{}.tf_record".format(
spm_basename, FLAGS.max_seq_length, FLAGS.eval_split)
if FLAGS.high_only:
eval_file_base = "high." + eval_file_base
elif FLAGS.middle_only:
eval_file_base = "middle." + eval_file_base
eval_file = os.path.join(FLAGS.output_dir, eval_file_base)
file_based_convert_examples_to_features(
eval_examples, tokenize_fn, eval_file)
assert len(eval_examples) % FLAGS.eval_batch_size == 0
eval_steps = int(len(eval_examples) // FLAGS.eval_batch_size)
eval_input_fn = file_based_input_fn_builder(
input_file=eval_file,
seq_length=FLAGS.max_seq_length,
is_training=False,
drop_remainder=True)
ret = estimator.evaluate(
input_fn=eval_input_fn,
steps=eval_steps)
# Log current result
tf.logging.info("=" * 80)
log_str = "Eval | "
for key, val in ret.items():
log_str += "{} {} | ".format(key, val)
tf.logging.info(log_str)
tf.logging.info("=" * 80)
if __name__ == "__main__":
tf.app.run()