-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathindex.js
146 lines (117 loc) · 3.91 KB
/
index.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import * as tf from '@tensorflow/tfjs';
import * as tfd from '@tensorflow/tfjs-data';
import * as blazeface from '@tensorflow-models/blazeface';
let video, videoWidth, videoHeight;
async function setupCamera() {
video = document.getElementById('video');
const stream = await navigator.mediaDevices.getUserMedia({
'audio': false,
'video': { facingMode: 'user' },
});
video.srcObject = stream;
return new Promise((resolve) => {
video.onloadedmetadata = () => {
resolve(video);
};
});
}
let canvas, canvasCtx;
async function setupCanvas() {
canvas = document.getElementById('output');
canvas.width = videoWidth;
canvas.height = videoHeight;
canvasCtx = canvas.getContext('2d');
canvasCtx.fillStyle = "rgba(255, 0, 0, 0.5)";
}
let faceDetectionModel;
async function loadFaceDetectionModel() {
console.log("loading face detection model");
await blazeface.load().then(m => {
faceDetectionModel = m;
console.log("face detection model loaded");
});
}
let maskDetectionModel;
async function loadMaskDetectionModel() {
console.log("loading mask detection model");
await tf.loadLayersModel('./model.json').then(m => {
maskDetectionModel = m;
console.log("mask detection model loaded");
});
}
const returnTensors = false;
const flipHorizontal = true;
const annotateBoxes = false;
const offset = tf.scalar(127.5);
const decisionThreshold = 0.9;
const loadingModel = document.getElementById('loading-model');
async function renderPrediction() {
// Get image from webcame
let img = tf.tidy(() => tf.browser.fromPixels(video));
// Detect faces
let faces = [];
try {
faces = await faceDetectionModel.estimateFaces(img, returnTensors, flipHorizontal, annotateBoxes);
} catch (e) {
console.error("estimateFaces:", e);
return;
}
if (faces.length > 0) {
// TODO: Loop through all predicted faces and detect if mask used or not.
// RIght now, it only highlights the fisrt face into the live view. (See the break command below)
for (let i = 0; i < faces.length; i++) {
let predictions = [];
let face = tf.tidy(() => img.resizeNearestNeighbor([224, 224])
.toFloat().sub(offset).div(offset).expandDims(0));
try {
predictions = await maskDetectionModel.predict(face).data();
} catch (e){
console.error("maskDetection:", e);
return;
}
face.dispose();
const start = faces[i].topLeft;
const end = faces[i].bottomRight;
const size = [end[0] - start[0], end[1] - start[1]];
canvasCtx.clearRect(0, 0, canvas.width, canvas.height);
let faceBoxStyle = "rgba(255, 0, 0, 0.25)";
let label = "without mask";
if (predictions.length > 0) {
if (predictions[0] > decisionThreshold) {
faceBoxStyle = "rgba(0, 255, 0, 0.25)";
label = `with mask: ${Math.floor(predictions[0] * 1000) / 10}%`;
} else {
label = `without mask: ${Math.floor(predictions[1] * 1000) / 10}%`;
}
// Render label and its box
canvasCtx.fillStyle = "rgba(255, 111, 0, 0.85)";
canvasCtx.fillRect(start[0], start[1] - 23, size[0], 23);
canvasCtx.font = "18px Raleway";
canvasCtx.fillStyle = "rgba(255, 255, 255, 1)";
canvasCtx.fillText(label, end[0] + 5, start[1] - 5);
}
canvasCtx.fillStyle = faceBoxStyle;
canvasCtx.fillRect(start[0], start[1], size[0], size[1]);
// TODO: Loop through all detected faces instead of the first one.
break;
}
}
img.dispose();
requestAnimationFrame(renderPrediction);
if (loadingModel.innerHTML !== "") {
loadingModel.innerHTML = "";
}
}
async function main() {
await setupCamera();
video.play();
videoWidth = video.videoWidth;
videoHeight = video.videoHeight;
video.width = videoWidth;
video.height = videoHeight;
setupCanvas();
await loadFaceDetectionModel();
await loadMaskDetectionModel();
renderPrediction();
}
main();