-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathyolo.py
64 lines (53 loc) · 2.15 KB
/
yolo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
from yolov4.tf import YOLOv4
import cv2
import time
from quicksort import quickSort
import numpy as np
import tensorflow as tf
yolo = YOLOv4()
# yolo = YOLOv4(tiny=True)
yolo.config.parse_names("coco.names")
yolo.config.parse_cfg("yolov4.cfg")
# yolo.input_size = (480,640)
yolo.make_model()
yolo.load_weights("yolov4.weights", weights_type="yolo")
# yolo.inference(media_path="C:/Users/Hadie/Desktop/yolo/NYC_14th_Street_looking_west_12_2005.jpg")
# the output is sorted according to the area by confidence
def image_path_to_yolo_bounding_boxes(image_path): # , coco_dict, word_index):
frame = cv2.imread(image_path)
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
bboxes = yolo.predict(frame, prob_thresh=0.25)
bboxes = bboxes.tolist()
n = len(bboxes)
# for each bounding box, append (area * confidence)
for i in range(n):
bboxes[i].append(bboxes[i][2] * bboxes[i][3] * bboxes[i][5])
# obj_class_name = coco_dict[int(bboxes[i][4])].replace(" ", "")
# if obj_class_name in word_index:
# bboxes[i][4] = word_index[coco_dict[int(bboxes[i][4])].replace(" ", "")]
# else:
# bboxes[i][4] = word_index['<pad>']
quickSort(bboxes, 0, n - 1)
bboxes = np.array(bboxes)
return bboxes
# raw feature extraction - not bounding boxes
def yolo_load_image(image_path):
frame = cv2.imread(image_path)
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
# height, width, _ = frame.shape
frame = yolo.resize_image(frame)
frame = frame / 255.0
frame = frame[np.newaxis, ...].astype(np.float32)
return frame
# yolo_new_input = yolo.model.input
# yolo_hidden_layer = yolo.model.layers[-1].output
# yolo_image_features_extract_model = tf.keras.Model(yolo_new_input, yolo_hidden_layer)
# driver code
# image_path = "C:/Users/Hadie/Desktop/yolo/NYC_14th_Street_looking_west_12_2005.jpg"
# bboxes = image_path_to_yolo_bounding_boxes(image_path)
# print(bboxes)
# image = cv2.imread(image_path)
# image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
# image = yolo.draw_bboxes(image, bboxes)
# cv2.imshow("result", image)
# cv2.waitKey()