-
Notifications
You must be signed in to change notification settings - Fork 57
/
Copy pathperformance.py
43 lines (33 loc) · 890 Bytes
/
performance.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
#%%
import torch
torch.set_grad_enabled(False)
from time import time
import math
from tqdm import tqdm
from effortless_config import Config
class args(Config):
MODEL = None
N_RUN = 10
args.parse_args()
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model = torch.jit.load(args.MODEL).eval().to(device)
sr = model.ddsp.sampling_rate
N = 2**(math.ceil(math.log2(sr)))
x = torch.randn(1, N, 1).to(device)
n_run = args.N_RUN
mean = 0
nel = 0
for i in tqdm(range(n_run), desc="testing..."):
st = time()
y = model(x, x)
nel += 1
mean += (time() - st - mean) / nel
realtime = N / (mean * sr)
smiley = ":)" if realtime >= 1 else ":("
print("\n")
print(
f"average of {1000*mean:.2f}ms to generate {1000*N/sr:.2f}ms over {n_run} trials on device {device}"
)
print(f"generation is {realtime:.2f}x realtime {smiley}")
print(80 * "-")
# %%